論文の概要: Efficient Fraud Detection Using Deep Boosting Decision Trees
- arxiv url: http://arxiv.org/abs/2302.05918v2
- Date: Thu, 18 May 2023 11:19:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 20:03:39.286054
- Title: Efficient Fraud Detection Using Deep Boosting Decision Trees
- Title(参考訳): ディープブースティング決定木を用いた効率的な不正検出
- Authors: Biao Xu, Yao Wang, Xiuwu Liao, Kaidong Wang
- Abstract要約: 不正検出とは、複雑なデータから潜在的に不正な活動を特定し、監視し、防止することである。
AIの最近の発展と成功、特に機械学習は、不正に対処する新しいデータ駆動型方法を提供する。
ディープブーピング決定木(DBDT)は、勾配ブースティングとニューラルネットワークに基づく不正検出の新しいアプローチである。
- 参考スコア(独自算出の注目度): 8.941773715949697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fraud detection is to identify, monitor, and prevent potentially fraudulent
activities from complex data. The recent development and success in AI,
especially machine learning, provides a new data-driven way to deal with fraud.
From a methodological point of view, machine learning based fraud detection can
be divided into two categories, i.e., conventional methods (decision tree,
boosting...) and deep learning, both of which have significant limitations in
terms of the lack of representation learning ability for the former and
interpretability for the latter. Furthermore, due to the rarity of detected
fraud cases, the associated data is usually imbalanced, which seriously
degrades the performance of classification algorithms. In this paper, we
propose deep boosting decision trees (DBDT), a novel approach for fraud
detection based on gradient boosting and neural networks. In order to combine
the advantages of both conventional methods and deep learning, we first
construct soft decision tree (SDT), a decision tree structured model with
neural networks as its nodes, and then ensemble SDTs using the idea of gradient
boosting. In this way we embed neural networks into gradient boosting to
improve its representation learning capability and meanwhile maintain the
interpretability. Furthermore, aiming at the rarity of detected fraud cases, in
the model training phase we propose a compositional AUC maximization approach
to deal with data imbalances at algorithm level. Extensive experiments on
several real-life fraud detection datasets show that DBDT can significantly
improve the performance and meanwhile maintain good interpretability. Our code
is available at https://github.com/freshmanXB/DBDT.
- Abstract(参考訳): 不正検出とは、複雑なデータから潜在的な不正行為を特定し、監視し、防止することである。
ai、特に機械学習の最近の開発と成功は、不正に対処する新しいデータ駆動方式を提供する。
方法論的観点から、機械学習に基づく不正検出は、従来の方法(決定木、強化木)とディープラーニングの2つのカテゴリに分けられる。
さらに, 検出された不正事件の頻度が高いため, 関連データは通常不均衡であり, 分類アルゴリズムの性能が著しく低下する。
本稿では,勾配ブースティングとニューラルネットワークに基づく不正検出の新しい手法として,DBDT(Deep boosting decision tree)を提案する。
従来の手法とディープラーニングの両方の利点を組み合わせるために,まず,ニューラルネットワークをノードとする決定木構造モデルであるソフト決定木(SDT)を構築し,さらに勾配向上のアイデアを用いてSDTをアンサンブルする。
このようにして、ニューラルネットワークを勾配向上に組み込んで表現学習能力を向上させるとともに、解釈可能性を維持する。
さらに,検出された不正事件の希少性に着目し,モデル学習段階において,アルゴリズムレベルでのデータ不均衡を扱うためのAUC最大化手法を提案する。
いくつかの実生活における不正検出データセットに対する大規模な実験により、DBDTは性能を大幅に改善し、高い解釈可能性を維持することができることが示された。
私たちのコードはhttps://github.com/freshmanxb/dbdtで利用可能です。
関連論文リスト
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
ボットネット(Botnet)は、悪意あるアクターによって制御されるコンピュータネットワークで、重要なサイバーセキュリティ上の課題を提示する。
本研究は、機械学習ベースのボットネット検出システムを弱体化させることを目的として、攻撃者が引き起こす高度な敵操作に対処する。
ISCXデータセットとISOTデータセットに基づいてトレーニングされた機械学習とディープラーニングアルゴリズムを活用するフローベース検出アプローチを導入する。
論文 参考訳(メタデータ) (2024-09-01T08:53:21Z) - Development of Multistage Machine Learning Classifier using Decision Trees and Boosting Algorithms over Darknet Network Traffic [0.0]
本研究では,ネットワークトラフィック分類のためのロバストな解を提案する。
AdaBoostやGradient Boostingといったブースティングアルゴリズムを決定木と組み合わせることで,ネットワークトラフィック分類のための堅牢なソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-22T17:10:26Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Backdoor Attack Detection in Computer Vision by Applying Matrix
Factorization on the Weights of Deep Networks [6.44397009982949]
本稿では,事前訓練したDNNの重みから特徴を抽出するバックドア検出手法を提案する。
他の検出技術と比較して、これはトレーニングデータを必要としないなど、多くのメリットがある。
提案手法は, 競合するアルゴリズムよりも効率性が高く, より正確であり, 深層学習とAIの安全な適用を確実にするのに役立つ。
論文 参考訳(メタデータ) (2022-12-15T20:20:18Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Multigoal-oriented dual-weighted-residual error estimation using deep
neural networks [0.0]
ディープラーニングは、関数を近似する柔軟性の高い強力なツールだと考えられている。
提案手法は,誤差の局所化に付随する問題を解く後続誤差推定法に基づく。
複数のゴール関数に対する後方誤差推定を得るために,効率的で実装が容易なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-12-21T16:59:44Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - Learning a Domain-Agnostic Visual Representation for Autonomous Driving
via Contrastive Loss [25.798361683744684]
ドメイン認識コントラスト学習(Domain-Agnostic Contrastive Learning、DACL)は、2段階の非監視ドメイン適応フレームワークである。
提案手法は,従来の最新手法に比べ,単眼深度推定作業における性能向上を実現した。
論文 参考訳(メタデータ) (2021-03-10T07:06:03Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。