論文の概要: Unsupervised Deep One-Class Classification with Adaptive Threshold based
on Training Dynamics
- arxiv url: http://arxiv.org/abs/2302.06048v1
- Date: Mon, 13 Feb 2023 01:51:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 17:02:29.275683
- Title: Unsupervised Deep One-Class Classification with Adaptive Threshold based
on Training Dynamics
- Title(参考訳): 訓練ダイナミクスに基づく適応しきい値付き教師なし深部1級分類
- Authors: Minkyung Kim, Junsik Kim, Jongmin Yu, Jun Kyun Choi
- Abstract要約: 疑似ラベル付き正規標本から正規性を学習する,教師なしの深層一階分類を提案する。
10個の異常検出ベンチマークによる実験結果から,本手法は大規模マージンによる異常検出性能を効果的に向上することが示された。
- 参考スコア(独自算出の注目度): 11.047949973156836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-class classification has been a prevailing method in building deep
anomaly detection models under the assumption that a dataset consisting of
normal samples is available. In practice, however, abnormal samples are often
mixed in a training dataset, and they detrimentally affect the training of deep
models, which limits their applicability. For robust normality learning of deep
practical models, we propose an unsupervised deep one-class classification that
learns normality from pseudo-labeled normal samples, i.e., outlier detection in
single cluster scenarios. To this end, we propose a pseudo-labeling method by
an adaptive threshold selected by ranking-based training dynamics. The
experiments on 10 anomaly detection benchmarks show that our method effectively
improves performance on anomaly detection by sizable margins.
- Abstract(参考訳): 1クラス分類は、通常のサンプルからなるデータセットが利用可能であると仮定して、深い異常検出モデルを構築するのに一般的な方法である。
しかし実際には、異常なサンプルはしばしばトレーニングデータセットに混ざり合っており、その適用性を制限する深層モデルのトレーニングに有害な影響を与える。
深い実用モデルのロバストな正規性学習のために,疑似ラベル付き正規サンプル,すなわち単一クラスタシナリオにおける異常検出から正規性を学ぶ教師なしの深い1クラス分類を提案する。
そこで本研究では,ランキングに基づくトレーニングダイナミクスによって選択される適応しきい値による擬似ラベル法を提案する。
また,10個の異常検出ベンチマークを用いた実験により,異常検出性能をかなりのマージンで効果的に改善できることを示した。
関連論文リスト
- Adaptive Intra-Class Variation Contrastive Learning for Unsupervised Person Re-Identification [10.180143197144803]
AdaInCVと呼ばれる教師なしRe-IDのための適応型クラス内変動コントラスト学習アルゴリズムを提案する。
このアルゴリズムは,クラスタリング後のクラス内変動を考慮し,各クラスのモデルの学習能力を定量的に評価する。
より具体的には、Adaptive Sample Mining (AdaSaM)とAdaptive Outlier Filter (AdaOF)の2つの新しい戦略が提案されている。
論文 参考訳(メタデータ) (2024-04-06T15:48:14Z) - Active anomaly detection based on deep one-class classification [9.904380236739398]
我々は,Deep SVDDにおけるアクティブラーニングの2つの重要な課題,すなわちクエリ戦略と半教師付きラーニング手法に対処する。
まず、単に異常を識別するのではなく、適応境界に従って不確実なサンプルを選択する。
第2に、ラベル付き正規データと異常データの両方を効果的に組み込むために、一級分類モデルの訓練にノイズコントラスト推定を適用した。
論文 参考訳(メタデータ) (2023-09-18T03:56:45Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
ほとんどの深層異常検出モデルは、データセットから正規性を学ぶことに基づいている。
実際、正規性仮定は実データ分布の性質によってしばしば破られる。
このギャップを減らし、より優れた正規性表現を実現するための学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T02:36:19Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Few-shot Deep Representation Learning based on Information Bottleneck
Principle [0.0]
標準異常検出問題では、サンプルが正規データの単一ソースから生成されたと仮定して、教師なしの設定で検出モデルを訓練する。
実際には、通常データは複数のクラスから構成されることが多いが、このような設定では、大規模ラベル付きデータを持たない通常のクラス間の相違点において、通常のインスタンスと異常を区別する学習が大きな課題となっている。
本研究では,通常のクラスからサンプルを少数用意することで,この課題を克服しようと試みるが,これは過度にコストがかかるものではない。
論文 参考訳(メタデータ) (2021-11-25T07:15:12Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
異常検出(AD)は、製造から医療まで、さまざまな分野に応用されている。
本研究は、トレーニングデータ全体がラベル付けされておらず、正規サンプルと異常サンプルの両方を含む可能性のある、教師なしAD問題に焦点を当てる。
この問題に対処するため,データリファインメントによる堅牢な一級分類フレームワークを構築した。
本手法は6.3AUCと12.5AUCの平均精度で最先端の1クラス分類法より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T01:36:08Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。