TIGER: Temporal Interaction Graph Embedding with Restarts
- URL: http://arxiv.org/abs/2302.06057v2
- Date: Thu, 16 Feb 2023 07:06:35 GMT
- Title: TIGER: Temporal Interaction Graph Embedding with Restarts
- Authors: Yao Zhang, Yun Xiong, Yongxiang Liao, Yiheng Sun, Yucheng Jin, Xuehao
Zheng, Yangyong Zhu
- Abstract summary: Temporal interaction graphs (TIGs) are prevalent in fields like e-commerce and social networks.
TIGs consist of sequences of timestamped interaction events that vary over time.
Previous methods have to process the sequence of events chronologically and consecutively to ensure node representations are up-to-date.
This prevents existing models from parallelization and reduces their flexibility in industrial applications.
- Score: 12.685645074210562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal interaction graphs (TIGs), consisting of sequences of timestamped
interaction events, are prevalent in fields like e-commerce and social
networks. To better learn dynamic node embeddings that vary over time,
researchers have proposed a series of temporal graph neural networks for TIGs.
However, due to the entangled temporal and structural dependencies, existing
methods have to process the sequence of events chronologically and
consecutively to ensure node representations are up-to-date. This prevents
existing models from parallelization and reduces their flexibility in
industrial applications. To tackle the above challenge, in this paper, we
propose TIGER, a TIG embedding model that can restart at any timestamp. We
introduce a restarter module that generates surrogate representations acting as
the warm initialization of node representations. By restarting from multiple
timestamps simultaneously, we divide the sequence into multiple chunks and
naturally enable the parallelization of the model. Moreover, in contrast to
previous models that utilize a single memory unit, we introduce a dual memory
module to better exploit neighborhood information and alleviate the staleness
problem. Extensive experiments on four public datasets and one industrial
dataset are conducted, and the results verify both the effectiveness and the
efficiency of our work.
Related papers
- Interaction Event Forecasting in Multi-Relational Recursive HyperGraphs: A Temporal Point Process Approach [12.142292322071299]
This work addresses the problem of forecasting higher-order interaction events in multi-relational recursive hypergraphs.
The proposed model, textitRelational Recursive Hyperedge Temporal Point Process (RRHyperTPP), uses an encoder that learns a dynamic node representation based on the historical interaction patterns.
We have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
arXiv Detail & Related papers (2024-04-27T15:46:54Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence
Modeling on Dynamic Entity Embeddings [6.314274045636102]
Event forecasting is a critical and challenging task in Temporal Knowledge Graph reasoning.
We propose SeDyT, a discriminative framework that performs sequence modeling on the dynamic entity embeddings.
By combining temporal Graph Neural Network models and sequence models, SeDyT achieves an average of 2.4% MRR improvement.
arXiv Detail & Related papers (2021-09-09T20:32:48Z) - Event2Graph: Event-driven Bipartite Graph for Multivariate Time-series
Anomaly Detection [25.832983667044708]
We propose a dynamic bipartite graph structure to encode the inter-dependencies between time-series.
Based on this design, relations between time series can be explicitly modelled via dynamic connections to event nodes.
arXiv Detail & Related papers (2021-08-15T17:50:37Z) - Continuous-Time Sequential Recommendation with Temporal Graph
Collaborative Transformer [69.0621959845251]
We propose a new framework Temporal Graph Sequential Recommender (TGSRec) upon our defined continuous-time bi-partite graph.
TCT layer can simultaneously capture collaborative signals from both users and items, as well as considering temporal dynamics inside sequential patterns.
Empirical results on five datasets show that TGSRec significantly outperforms other baselines.
arXiv Detail & Related papers (2021-08-14T22:50:53Z) - Temporal Graph Modeling for Skeleton-based Action Recognition [25.788239844759246]
We propose a Temporal Enhanced Graph Convolutional Network (TE-GCN) to capture complex temporal dynamic.
The constructed temporal relation graph explicitly builds connections between semantically related temporal features.
Experiments are performed on two widely used large-scale datasets.
arXiv Detail & Related papers (2020-12-16T09:02:47Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
We introduce a general framework for leveraging graph stream data for temporal prediction-based applications.
Our proposed framework includes novel methods for learning an appropriate graph time-series representation.
We find that the top-3 temporal models are always those that leverage the new $epsilon$-graph time-series representation.
arXiv Detail & Related papers (2020-09-21T16:48:29Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.