論文の概要: Exploring Navigation Maps for Learning-Based Motion Prediction
- arxiv url: http://arxiv.org/abs/2302.06195v1
- Date: Mon, 13 Feb 2023 09:06:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 16:16:51.880753
- Title: Exploring Navigation Maps for Learning-Based Motion Prediction
- Title(参考訳): 学習に基づく動き予測のためのナビゲーションマップの探索
- Authors: Julian Schmidt, Julian Jordan, Franz Gritschneder, Thomas Monninger,
Klaus Dietmayer
- Abstract要約: 本稿では,ナビゲーションマップを学習に基づく動き予測モデルに統合するアプローチについて述べる。
われわれのアプローチは、地図をまったく使わないよりも大幅に改善されている。
Argoverse用の公開ナビゲーションマップAPIにより,ナビゲーションマップを用いた独自のアプローチの開発と評価が可能となった。
- 参考スコア(独自算出の注目度): 9.919575841909962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prediction of surrounding agents' motion is a key for safe autonomous
driving. In this paper, we explore navigation maps as an alternative to the
predominant High Definition (HD) maps for learning-based motion prediction.
Navigation maps provide topological and geometrical information on road-level,
HD maps additionally have centimeter-accurate lane-level information. As a
result, HD maps are costly and time-consuming to obtain, while navigation maps
with near-global coverage are freely available. We describe an approach to
integrate navigation maps into learning-based motion prediction models. To
exploit locally available HD maps during training, we additionally propose a
model-agnostic method for knowledge distillation. In experiments on the
publicly available Argoverse dataset with navigation maps obtained from
OpenStreetMap, our approach shows a significant improvement over not using a
map at all. Combined with our method for knowledge distillation, we achieve
results that are close to the original HD map-reliant models. Our publicly
available navigation map API for Argoverse enables researchers to develop and
evaluate their own approaches using navigation maps.
- Abstract(参考訳): 周囲のエージェントの動きの予測は安全な自動運転の鍵となる。
本稿では,学習に基づく動き予測のためのハイ定義(HD)マップの代替として,ナビゲーションマップを探索する。
ナビゲーションマップは、道路レベルのトポロジカルおよび幾何学的な情報を提供する。
結果として、hdマップは費用がかかり、時間もかかるが、ほぼグローバル範囲のナビゲーションマップは無料で利用できる。
本稿では,ナビゲーションマップを学習に基づく動き予測モデルに統合するアプローチについて述べる。
また, 局所的に利用可能なhdマップを活用すべく, モデル非依存な知識蒸留法を提案する。
OpenStreetMapから取得したナビゲーションマップを用いた一般公開Argoverseデータセットの実験では,本手法は地図をまったく使用しないよりも大幅に改善されている。
知識蒸留法と組み合わせて,元のHDマップ・リライアントモデルに近い結果が得られる。
Argoverse用の公開ナビゲーションマップAPIにより,ナビゲーションマップを用いた独自のアプローチの開発と評価が可能となった。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - DeepAerialMapper: Deep Learning-based Semi-automatic HD Map Creation for Highly Automated Vehicles [0.0]
高解像度空中画像からHDマップを作成するための半自動手法を提案する。
提案手法では, ニューラルネットワークを訓練して, 空中画像をHDマップに関連するクラスに意味的に分割する。
マップをLanelet2フォーマットにエクスポートすることで、さまざまなユースケースを簡単に拡張できる。
論文 参考訳(メタデータ) (2024-10-01T15:05:05Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) マップは、より安価で、世界中でカバーでき、スケーラブルな代替手段を提供する。
本稿では,オンライン地図予測にSDマップを統合する新しいフレームワークを提案し,Transformer を用いたエンコーダ SD Map Representations を提案する。
この拡張は、現在の最先端のオンラインマップ予測手法におけるレーン検出とトポロジー予測を一貫して(最大60%まで)大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T15:42:22Z) - Object Goal Navigation with Recursive Implicit Maps [92.6347010295396]
対象目標ナビゲーションのための暗黙的な空間マップを提案する。
提案手法は, 挑戦的なMP3Dデータセット上での技量を著しく上回る。
我々は、実際のロボットにモデルをデプロイし、実際のシーンでオブジェクトゴールナビゲーションの結果を奨励する。
論文 参考訳(メタデータ) (2023-08-10T14:21:33Z) - Neural Map Prior for Autonomous Driving [17.198729798817094]
高精細(HD)セマンティックマップは、自動運転車が都市環境をナビゲートするために不可欠である。
オフラインのHDマップを作成する従来の方法には、労働集約的な手動アノテーションプロセスが含まれる。
近年,オンラインセンサを用いた局所地図作成手法が提案されている。
本研究では,グローバルマップのニューラル表現であるニューラルマッププライオリティ(NMP)を提案する。
論文 参考訳(メタデータ) (2023-04-17T17:58:40Z) - High-Definition Map Generation Technologies For Autonomous Driving: A
Review [0.0]
ハイデフィニション(HD)マップは近年多くの注目を集めている。
本稿では,2次元地図と3次元地図の両方を利用した最近のHDマップ生成技術についてレビューする。
論文 参考訳(メタデータ) (2022-06-11T02:32:11Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
長距離航法には、計画と局所的な移動可能性の推論の両方が必要である。
学習と計画を統合する学習に基づくアプローチを提案する。
ViKiNGは、画像ベースの学習コントローラを利用できる。
論文 参考訳(メタデータ) (2022-02-23T02:14:23Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HDマップの構築は自動運転にとって重要な問題である。
従来のHDマップは、多くのシナリオでは信頼性の低いセンチメートルレベルの正確な位置決めと結合している。
オンライン地図学習は、自動運転車に先立って意味と幾何学を提供するための、よりスケーラブルな方法である。
論文 参考訳(メタデータ) (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z) - Trajectory Prediction for Autonomous Driving with Topometric Map [10.831436392239585]
最先端の自動運転システムは、ローカライゼーションとナビゲーションのための高定義(HD)マップに依存している。
マップレス自動運転のためのエンドツーエンドトランスネットワークベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-09T08:16:16Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。