論文の概要: Variational Mixture of HyperGenerators for Learning Distributions Over
Functions
- arxiv url: http://arxiv.org/abs/2302.06223v1
- Date: Mon, 13 Feb 2023 09:54:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 16:06:50.926390
- Title: Variational Mixture of HyperGenerators for Learning Distributions Over
Functions
- Title(参考訳): 関数上の学習分布のための変分混合ハイパージェネレータ
- Authors: Batuhan Koyuncu, Pablo Sanchez-Martin, Ignacio Peis, Pablo M. Olmos,
Isabel Valera
- Abstract要約: VAMoHと呼ばれる新しい深層生成モデルを提案する。
VAMoHは、INRを用いた連続関数のモデリング機能と変分オートエンコーダ(VAE)の推論機能を組み合わせた。
- 参考スコア(独自算出の注目度): 10.923095497936439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent approaches build on implicit neural representations (INRs) to propose
generative models over function spaces. However, they are computationally
intensive when dealing with inference tasks, such as missing data imputation,
or directly cannot tackle them. In this work, we propose a novel deep
generative model, named VAMoH. VAMoH combines the capabilities of modeling
continuous functions using INRs and the inference capabilities of Variational
Autoencoders (VAEs). In addition, VAMoH relies on a normalizing flow to define
the prior, and a mixture of hypernetworks to parametrize the data
log-likelihood. This gives VAMoH a high expressive capability and
interpretability. Through experiments on a diverse range of data types, such as
images, voxels, and climate data, we show that VAMoH can effectively learn rich
distributions over continuous functions. Furthermore, it can perform
inference-related tasks, such as conditional super-resolution generation and
in-painting, as well or better than previous approaches, while being less
computationally demanding.
- Abstract(参考訳): 近年のアプローチは、関数空間上の生成モデルを提案するために暗黙の神経表現(INR)に基づいている。
しかし、データ計算の欠如などの推論タスクを扱う場合や、直接処理できない場合、計算集約的である。
本研究では,VAMoHと呼ばれる新しい深層生成モデルを提案する。
VAMoHはINRを用いた連続関数のモデリング機能と変分オートエンコーダ(VAE)の推論機能を組み合わせたものである。
さらにVAMoHは、事前を定義するための正規化フローと、データログライクな状態をパラメータ化するハイパーネットワークの混合に依存している。
これによりVAMoHは高い表現能力と解釈可能性が得られる。
画像やボクセル,気候データなど,さまざまな種類のデータタイプの実験を通じて,VAMoHは連続関数上の豊富な分布を効果的に学習できることを示す。
さらに、条件付き超解像生成やインペインティングなどの推論関連タスクを、計算処理の要求を少なくしつつ、従来の手法よりも優れている。
関連論文リスト
- Scalable Random Feature Latent Variable Models [8.816134440622696]
ブロック座標降下変動推論(BCD-VI)と呼ばれる明示的なPDFと新しいVBIアルゴリズムを得るために,ディリクレプロセス(DP)のスティック破断構成を導入する。
これにより、RFLVMのスケーラブルバージョン、あるいは略してSRFLVMの開発が可能になる。
論文 参考訳(メタデータ) (2024-10-23T09:22:43Z) - MING: A Functional Approach to Learning Molecular Generative Models [46.189683355768736]
本稿では,関数表現に基づく分子生成モデル学習のための新しいパラダイムを提案する。
本稿では,関数空間における分子分布を学習する拡散モデルである分子インプリシットニューラルジェネレーション(MING)を提案する。
論文 参考訳(メタデータ) (2024-10-16T13:02:02Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Bayesian Learning of Coupled Biogeochemical-Physical Models [28.269731698116257]
海洋生態系の予測モデルは、様々なニーズに使われている。
希少な測定と海洋プロセスの理解が限られているため、かなりの不確実性がある。
候補モデルの空間での処理と新しいモデルの発見を可能にするベイズモデル学習手法を開発した。
論文 参考訳(メタデータ) (2022-11-12T17:49:18Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Improving the quality of generative models through Smirnov
transformation [1.3492000366723798]
本稿では,ジェネレータの出力として使用される新しいアクティベーション関数を提案する。
これはスミルノフ確率変換に基づいており、生成されたデータの品質を改善するために特別に設計されている。
論文 参考訳(メタデータ) (2021-10-29T17:01:06Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。