Deterministic photon source interfaced with a programmable
silicon-nitride integrated circuit
- URL: http://arxiv.org/abs/2302.06282v1
- Date: Mon, 13 Feb 2023 11:36:52 GMT
- Title: Deterministic photon source interfaced with a programmable
silicon-nitride integrated circuit
- Authors: Ying Wang, Carlos F.D. Faurby, Fabian Ruf, Patrik I. Sund, Kasper H.
Nielsen, Nicolas Volet, Martijn J.R. Heck, Nikolai Bart, Andreas D. Wieck,
Arne Ludwig, Leonardo Midolo, Stefano Paesani, Peter Lodahl
- Abstract summary: We develop a quantum photonic platform that interconnects a high-quality quantum dot single-photon source and a low-loss photonic integrated circuit made in silicon nitride.
The platform is characterized and programmed to demonstrate various multiphoton applications, including bosonic suppression laws and photonic entanglement generation.
- Score: 2.248469235112198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a quantum photonic platform that interconnects a high-quality
quantum dot single-photon source and a low-loss photonic integrated circuit
made in silicon nitride. The platform is characterized and programmed to
demonstrate various multiphoton applications, including bosonic suppression
laws and photonic entanglement generation. The results show a promising
technological route forward to scale-up photonic quantum hardware.
Related papers
- On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - On-chip quantum interference between independent lithium niobate-on-insulator photon-pair sources [35.310629519009204]
A lithium niobate-on-insulator (LNOI) integrated photonic circuit generates a two-photon path-entangled state, and a programmable interferometer for quantum interference.
We generate entangled photons with $sim2.3times108$ pairs/s/mW brightness and perform quantum interference experiments on the chip with $96.8pm3.6%$ visibility.
Our results provide a path towards large-scale integrated quantum photonics including efficient photon-pair generation and programmable circuits for applications such as boson sampling and quantum communications.
arXiv Detail & Related papers (2024-04-12T10:24:43Z) - Tunable quantum emitters on large-scale foundry silicon photonics [0.6165122427320179]
Integration of atomic quantum systems with single-emitter tunability remains an open challenge.
Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters.
We achieve single photon emission via resonance fluorescence and scalable emission wavelength tunability through an electrically controlled non-volatile memory.
arXiv Detail & Related papers (2023-06-10T15:04:30Z) - High-speed thin-film lithium niobate quantum processor driven by a
solid-state quantum emitter [2.308881946683637]
We develop an integrated photonic platform based on thin-film lithium niobate.
We interface it with deterministic solid-state single-photon sources based on quantum dots in nanophotonic waveguides.
We realize a variety of key photonic quantum information processing functionalities with the high-speed circuits.
arXiv Detail & Related papers (2022-11-10T17:15:08Z) - Silicon photonic devices for scalable quantum information applications [3.0944513782023786]
This paper reviews the relevant research results and state-of-the-art technologies on the silicon photonic chip for scalable quantum applications.
Despite the shortcomings, properties of some components have already met the requirements for further expansion.
arXiv Detail & Related papers (2022-08-10T01:52:59Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.