論文の概要: Online Arbitrary Shaped Clustering through Correlated Gaussian Functions
- arxiv url: http://arxiv.org/abs/2302.06335v1
- Date: Mon, 13 Feb 2023 13:12:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 15:28:35.999793
- Title: Online Arbitrary Shaped Clustering through Correlated Gaussian Functions
- Title(参考訳): 相関ガウス関数によるオンライン任意型クラスタリング
- Authors: Ole Christian Eidheim
- Abstract要約: 教師なしの方法で入力から任意の形状のクラスタを生成できる新しいオンラインクラスタリングアルゴリズムが提案されている。
このアルゴリズムは、バックプロパゲーションによるモデル最適化よりも生物学的に妥当であると見なすことができるが、実用性にはさらなる研究が必要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is no convincing evidence that backpropagation is a biologically
plausible mechanism, and further studies of alternative learning methods are
needed. A novel online clustering algorithm is presented that can produce
arbitrary shaped clusters from inputs in an unsupervised manner, and requires
no prior knowledge of the number of clusters in the input data. This is
achieved by finding correlated outputs from functions that capture commonly
occurring input patterns. The algorithm can be deemed more biologically
plausible than model optimization through backpropagation, although practical
applicability may require additional research. However, the method yields
satisfactory results on several toy datasets on a noteworthy range of
hyperparameters.
- Abstract(参考訳): バックプロパゲーションが生物学的に妥当なメカニズムであることは確実な証拠はなく、代替学習方法のさらなる研究が必要である。
新規なオンラインクラスタリングアルゴリズムは、教師なしの方法で入力から任意の形状のクラスタを生成することができ、入力データ内のクラスタ数の事前知識を必要としない。
これは、一般的に発生する入力パターンをキャプチャする関数から相関した出力を見つけることで達成される。
このアルゴリズムは、バックプロパゲーションによるモデル最適化よりも生物学的に妥当であると見なすことができる。
しかし、この方法は注目すべきハイパーパラメータの範囲でいくつかのトイデータセットで十分な結果が得られる。
関連論文リスト
- Gram-Schmidt Methods for Unsupervised Feature Extraction and Selection [7.373617024876725]
本稿では,関数空間上のGram-Schmidtプロセスを提案する。
合成および実世界のベンチマークデータセットに対する実験結果を提供する。
驚いたことに、線形特徴抽出アルゴリズムは同等であり、しばしば重要な非線形特徴抽出法よりも優れている。
論文 参考訳(メタデータ) (2023-11-15T21:29:57Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
因果発見は、観察データによる特徴間の因果関係を特定することを目的としている。
本稿では,前向きと後向きの機能選択に依存する新たな因果的特徴選択手法を提案する。
精度および有限サンプルの場合の回帰誤差と分類誤差について理論的に保証する。
論文 参考訳(メタデータ) (2023-10-17T08:04:45Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Boolean Reasoning-Based Biclustering for Shifting Pattern Extraction [0.20305676256390928]
Biclusteringは、さまざまな種類の関心のあるパターンの品質を測定する機能によって駆動されるため、データ内のパターンを検索するための強力なアプローチです。
シフトパターンはデータの変動が一定であるので、特に興味深い。
この研究は、ブール推論によるシフトパターンの誘導は、すべての包含-最大デルタシフトパターンを見つける能力によるものであることを示す。
論文 参考訳(メタデータ) (2021-04-26T11:40:17Z) - Distributed Learning via Filtered Hyperinterpolation on Manifolds [2.2046162792653017]
本稿では,実数値関数を多様体上で学習する問題について検討する。
大規模なデータセットを扱うという問題に触発され、並列データ処理アプローチが提示される。
学習関数の近似品質と多様体全体の量的関係を証明した。
論文 参考訳(メタデータ) (2020-07-18T10:05:18Z) - Flexible Bayesian Nonlinear Model Configuration [10.865434331546126]
線形あるいは単純なパラメトリックモデルはしばしば入力変数と応答の間の複雑な関係を記述するのに十分ではない。
高いフレキシブルな非線形パラメトリック回帰モデルの構築と選択に柔軟なアプローチを導入する。
遺伝的に修飾されたモードジャンプチェーンモンテカルロアルゴリズムを用いてベイズ推論を行う。
論文 参考訳(メタデータ) (2020-03-05T21:20:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。