論文の概要: Distributed Learning via Filtered Hyperinterpolation on Manifolds
- arxiv url: http://arxiv.org/abs/2007.09392v1
- Date: Sat, 18 Jul 2020 10:05:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 05:23:59.342201
- Title: Distributed Learning via Filtered Hyperinterpolation on Manifolds
- Title(参考訳): マニフォールド上のフィルタハイパー補間による分散学習
- Authors: Guido Mont\'ufar, Yu Guang Wang
- Abstract要約: 本稿では,実数値関数を多様体上で学習する問題について検討する。
大規模なデータセットを扱うという問題に触発され、並列データ処理アプローチが提示される。
学習関数の近似品質と多様体全体の量的関係を証明した。
- 参考スコア(独自算出の注目度): 2.2046162792653017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning mappings of data on manifolds is an important topic in contemporary
machine learning, with applications in astrophysics, geophysics, statistical
physics, medical diagnosis, biochemistry, 3D object analysis. This paper
studies the problem of learning real-valued functions on manifolds through
filtered hyperinterpolation of input-output data pairs where the inputs may be
sampled deterministically or at random and the outputs may be clean or noisy.
Motivated by the problem of handling large data sets, it presents a parallel
data processing approach which distributes the data-fitting task among multiple
servers and synthesizes the fitted sub-models into a global estimator. We prove
quantitative relations between the approximation quality of the learned
function over the entire manifold, the type of target function, the number of
servers, and the number and type of available samples. We obtain the
approximation rates of convergence for distributed and non-distributed
approaches. For the non-distributed case, the approximation order is optimal.
- Abstract(参考訳): 多様体上のデータの学習マッピングは、天体物理学、地球物理学、統計物理学、医学診断、生化学、3dオブジェクト分析など、現代の機械学習において重要なトピックである。
本稿では,入力が決定論的あるいはランダムにサンプリングされ,出力がクリーンあるいはノイズになるような入出力データ対のフィルタ付きハイパー補間を通じて,多様体上の実数値関数を学習する問題について検討する。
大規模データセットを扱う問題に動機づけられ、複数のサーバ間でデータフィッティングタスクを分散し、適合したサブモデルをグローバル推定器に合成する並列データ処理手法を提案する。
本研究では,多様体全体の学習関数の近似品質,対象関数の種類,サーバ数,利用可能なサンプルの数と種類との関係を定量的に証明する。
分散および非分散アプローチにおける収束の近似率を求める。
非分散の場合、近似順序は最適である。
関連論文リスト
- Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
本研究では,相互依存データに対する問題に対して,学習可能な分散場を持つ幾何学的拡散モデルを提案する。
因果推論によって新たな学習目標が導出され、ドメイン間で無神経な相互依存の一般化可能なパターンを学習するためのモデルが導出される。
論文 参考訳(メタデータ) (2024-06-07T14:29:21Z) - Learning on manifolds without manifold learning [0.0]
未知分布からランダムに描画されたデータに基づく関数近似は、機械学習において重要な問題である。
本稿では,未知多様体を部分多様体の周囲超球面として投影し,超球面上に特別に設計されたカーネルを用いてワンショット近似を構築する問題について考察する。
論文 参考訳(メタデータ) (2024-02-20T03:27:53Z) - Manifold Learning with Sparse Regularised Optimal Transport [0.17205106391379024]
実世界のデータセットはノイズの多い観測とサンプリングを受けており、基礎となる多様体に関する情報を蒸留することが大きな課題である。
本稿では,2次正規化を用いた最適輸送の対称版を利用する多様体学習法を提案する。
得られたカーネルは連続的な極限においてLaplace型演算子と整合性を証明し、ヘテロスケダスティックノイズに対する堅牢性を確立し、これらの結果をシミュレーションで示す。
論文 参考訳(メタデータ) (2023-07-19T08:05:46Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
我々は,観測されていない特徴分布を最大エントロピー仮説で近似することにより,ロジスティック回帰と類似した新しいモデルが,集約データからのみ学習されることを示す。
我々は、この方法で学習したモデルが、完全な非凝集データでトレーニングされたロジスティックモデルに匹敵するパフォーマンスを達成することができるという、いくつかの公開データセットに関する実証的な証拠を提示する。
論文 参考訳(メタデータ) (2022-10-05T09:17:27Z) - A graph representation based on fluid diffusion model for multimodal
data analysis: theoretical aspects and enhanced community detection [14.601444144225875]
流体拡散に基づくグラフ定義の新しいモデルを提案する。
本手法は,マルチモーダルデータ解析において,コミュニティ検出のための最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-12-07T16:30:03Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z) - Linear predictor on linearly-generated data with missing values: non
consistency and solutions [0.0]
本研究では,予測対象が全観測データの線形関数である場合について検討する。
不足する値が存在する場合、最適予測器は線形でない可能性があることを示す。
論文 参考訳(メタデータ) (2020-02-03T11:49:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。