論文の概要: Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
- arxiv url: http://arxiv.org/abs/2302.06352v3
- Date: Wed, 16 Apr 2025 15:17:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 21:28:15.405693
- Title: Deep Anatomical Federated Network (Dafne): An open client-server framework for the continuous, collaborative improvement of deep learning-based medical image segmentation
- Title(参考訳): Deep Anatomical Federated Network (Dafne): ディープラーニングベースの医療画像セグメンテーションの継続的な協調的改善のためのオープンクライアントサーバフレームワーク
- Authors: Francesco Santini, Jakob Wasserthal, Abramo Agosti, Xeni Deligianni, Kevin R. Keene, Hermien E. Kan, Stefan Sommer, Fengdan Wang, Claudia Weidensteiner, Giulia Manco, Matteo Paoletti, Valentina Mazzoli, Arjun Desai, Anna Pichiecchio,
- Abstract要約: Dafneは、放射線画像のセマンティックセグメンテーションのためのクライアントサーバアーキテクチャを備えたフリーソフトウェアである。
Dafneは、下肢の38MRIデータセット上で、モデル世代間でのパフォーマンス向上を評価することにより、局所的に評価された。
Dafne氏は時間とともにセグメンテーションの品質を改善し、学習と一般化の可能性を示した。
- 参考スコア(独自算出の注目度): 1.4241025972756394
- License:
- Abstract: Purpose: To present and evaluate Dafne (deep anatomical federated network), a freely available decentralized, collaborative deep learning system for the semantic segmentation of radiological images through federated incremental learning. Materials and Methods: Dafne is free software with a client-server architecture. The client side is an advanced user interface that applies the deep learning models stored on the server to the user's data and allows the user to check and refine the prediction. Incremental learning is then performed at the client's side and sent back to the server, where it is integrated into the root model. Dafne was evaluated locally, by assessing the performance gain across model generations on 38 MRI datasets of the lower legs, and through the analysis of real-world usage statistics (n = 639 use-cases). Results: Dafne demonstrated a statistically improvement in the accuracy of semantic segmentation over time (average increase of the Dice Similarity Coefficient by 0.007 points/generation on the local validation set, p < 0.001). Qualitatively, the models showed enhanced performance on various radiologic image types, including those not present in the initial training sets, indicating good model generalizability. Conclusion: Dafne showed improvement in segmentation quality over time, demonstrating potential for learning and generalization.
- Abstract(参考訳): 目的:Dafne (deep anatomical federated network, 深層解剖学連合ネットワーク) の提示と評価を行う。
Materials and Methods: Dafneはクライアントサーバアーキテクチャを備えたフリーソフトウェアです。
クライアント側は高度なユーザインターフェースであり、サーバに格納されているディープラーニングモデルをユーザのデータに適用し、ユーザが予測をチェックして改善することができる。
その後、インクリメンタルラーニングはクライアント側で行われ、サーバに送信され、そこでルートモデルに統合されます。
Dafneは、下肢の38のMRIデータセットにおけるモデル世代間でのパフォーマンス向上を評価し、実世界の利用統計(n = 639のユースケース)を分析して、局所的に評価された。
結果: Dafne は時間とともに意味的セグメンテーションの精度を統計的に改善した(局所的検証セットで Dice 類似度係数を 0.007 ポイント/ジェネレーション,p < 0.001)。
定性的には,初期訓練セットに存在しないものを含む各種の放射像に対して,優れたモデル一般化性を示した。
結論: Dafne氏は時間とともにセグメンテーションの品質を改善し、学習と一般化の可能性を示した。
関連論文リスト
- Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation [3.7274206780843477]
我々は、AIとクラウドソーシングを組み合わせた堅牢で汎用的なフレームワークを導入し、医療画像データセットの品質と量を改善する。
当社のアプローチでは,多様なクラウドアノテータのグループによる医療画像のラベル付けを効率的に行うことができる,ユーザフレンドリーなオンラインプラットフォームを活用している。
我々は、生成AIモデルであるpix2pixGANを使用して、リアルな形態的特徴をキャプチャする合成画像を用いてトレーニングデータセットを拡張する。
論文 参考訳(メタデータ) (2024-09-04T21:22:54Z) - A Classifier-Free Incremental Learning Framework for Scalable Medical Image Segmentation [6.591403935303867]
本稿では,単一分類器のないネットワークにおいて,可変数のクラスをセグメント化できる新しいセグメンテーションパラダイムを提案する。
このネットワークは、コントラスト学習を用いて訓練され、簡単な解釈を容易にする識別的特徴表現を生成する。
統合ネットワーク内での様々なクラス数処理における本手法の柔軟性とその漸進学習能力について述べる。
論文 参考訳(メタデータ) (2024-05-25T19:05:07Z) - Federated Semi-supervised Learning for Medical Image Segmentation with intra-client and inter-client Consistency [10.16245019262119]
フェデレートラーニングは、ローカルデータ交換なしで、分離されたクライアントの共有モデルをトレーニングすることを目的としている。
本研究では,医用画像セグメンテーションのための新しい半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-19T12:52:38Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCyは、FLと自己教師付き学習を組み合わせた半教師付き学習(FSSL)手法で、ラベル付きビデオとラベルなしビデオの両方の分散データセットを利用する。
外科的段階の自動認識作業において,最先端のFSSL法よりも顕著な性能向上を示した。
論文 参考訳(メタデータ) (2022-03-14T17:44:53Z) - BERT WEAVER: Using WEight AVERaging to enable lifelong learning for
transformer-based models in biomedical semantic search engines [49.75878234192369]
We present WEAVER, a simple, yet efficient post-processing method that infuse old knowledge into the new model。
WEAVERを逐次的に適用すると、同じ単語の埋め込み分布が、一度にすべてのデータに対する総合的なトレーニングとして得られることを示す。
論文 参考訳(メタデータ) (2022-02-21T10:34:41Z) - PMFL: Partial Meta-Federated Learning for heterogeneous tasks and its
applications on real-world medical records [11.252157002705484]
フェデレートされた機械学習は、異なるソースからの分散データを利用する汎用的で柔軟なツールである。
本稿では,この問題を解決するために,フェデレートラーニングとメタラーニングを統合した新しいアルゴリズムを提案する。
我々は,異種医療データセットの処理において,アルゴリズムが最速のトレーニング速度を得ることができ,最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-12-10T03:55:03Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。