論文の概要: Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2409.03087v1
- Date: Wed, 4 Sep 2024 21:22:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 22:55:47.833486
- Title: Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation
- Title(参考訳): 医用画像セグメンテーションのための強化トレーニングデータセットの作成におけるAIと市民科学の結合
- Authors: Amir Syahmi, Xiangrong Lu, Yinxuan Li, Haoxuan Yao, Hanjun Jiang, Ishita Acharya, Shiyi Wang, Yang Nan, Xiaodan Xing, Guang Yang,
- Abstract要約: 我々は、AIとクラウドソーシングを組み合わせた堅牢で汎用的なフレームワークを導入し、医療画像データセットの品質と量を改善する。
当社のアプローチでは,多様なクラウドアノテータのグループによる医療画像のラベル付けを効率的に行うことができる,ユーザフレンドリーなオンラインプラットフォームを活用している。
我々は、生成AIモデルであるpix2pixGANを使用して、リアルな形態的特徴をキャプチャする合成画像を用いてトレーニングデータセットを拡張する。
- 参考スコア(独自算出の注目度): 3.7274206780843477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in medical imaging and artificial intelligence (AI) have greatly enhanced diagnostic capabilities, but the development of effective deep learning (DL) models is still constrained by the lack of high-quality annotated datasets. The traditional manual annotation process by medical experts is time- and resource-intensive, limiting the scalability of these datasets. In this work, we introduce a robust and versatile framework that combines AI and crowdsourcing to improve both the quality and quantity of medical image datasets across different modalities. Our approach utilises a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently. By integrating the MedSAM segmentation AI with this platform, we accelerate the annotation process while maintaining expert-level quality through an algorithm that merges crowd-labelled images. Additionally, we employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features. These methods are combined into a cohesive framework designed to produce an enhanced dataset, which can serve as a universal pre-processing pipeline to boost the training of any medical deep learning segmentation model. Our results demonstrate that this framework significantly improves model performance, especially when training data is limited.
- Abstract(参考訳): 近年の医用画像と人工知能(AI)の進歩は診断能力を大幅に向上させたが、効果的な深層学習(DL)モデルの開発は、高品質な注釈付きデータセットの欠如により、いまだに制限されている。
医療専門家による従来の手作業によるアノテーションプロセスは、時間とリソース集約であり、これらのデータセットのスケーラビリティを制限している。
本研究では、AIとクラウドソーシングを組み合わせた堅牢で汎用的なフレームワークを導入し、さまざまなモダリティにわたる医療画像データセットの品質と量を改善する。
提案手法では,多様なクラウドアノテータ群が医療画像のラベル付けを効率的に行えるように,ユーザフレンドリーなオンラインプラットフォームを活用している。
MedSAMセグメンテーションAIをこのプラットフォームに統合することにより、私たちは、クラウドラベリングされたイメージをマージするアルゴリズムにより、専門家レベルの品質を維持しながら、アノテーションプロセスを加速する。
さらに、生成AIモデルであるpix2pixGANを用いて、リアルな形態的特徴をキャプチャする合成画像を用いてトレーニングデータセットを拡張する。
これらの手法は、拡張データセットを生成するために設計された凝集性フレームワークに統合され、あらゆる医学的深層学習セグメンテーションモデルのトレーニングを強化する普遍的な前処理パイプラインとして機能する。
このフレームワークは,特にトレーニングデータに制限がある場合,モデルの性能を著しく改善することを示す。
関連論文リスト
- MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions [0.13108652488669734]
神経ネットワークに基づくシステムの臨床実践への統合は、ドメインの一般化と堅牢性に関連する課題によって制限される。
我々は、12のデータセットと9つの画像モダリティをカバーするMedMNIST+コレクションに基づくベンチマークデータセットであるMedMNIST-Cを作成し、オープンソース化した。
論文 参考訳(メタデータ) (2024-06-25T13:20:39Z) - Full-Scale Indexing and Semantic Annotation of CT Imaging: Boosting FAIRness [0.41942958779358674]
提案手法は, 検索性, アクセシビリティ, インターオペラビリティ, 再利用性を向上させるために, 臨床計算断層撮影(CT)画像シリーズの統合と向上に重点を置いている。
メタデータはHL7 FHIRリソースで標準化され、研究プロジェクト間の効率的なデータ認識とデータ交換を可能にする。
この研究は、UKSH MeDIC内で堅牢なプロセスを統合することに成功し、23万以上のCT画像シリーズと800万以上のSNOMED CTアノテーションのセマンティックエンリッチ化につながった。
論文 参考訳(メタデータ) (2024-06-21T17:55:22Z) - VISION-MAE: A Foundation Model for Medical Image Segmentation and
Classification [36.8105960525233]
医用画像に特化して設計された新しい基礎モデルVISION-MAEを提案する。
VISION-MAEは、様々なモダリティから250万枚の未ラベル画像のデータセットでトレーニングされている。
その後、明示的なラベルを使って分類とセグメンテーションのタスクに適応する。
論文 参考訳(メタデータ) (2024-02-01T21:45:12Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology
Datasets [0.0]
病理組織学的データセットGAN(HDGAN)は、画像の生成と分割のためのフレームワークであり、大きな解像度の病理組織像によく対応している。
生成したバックボーンの更新,ジェネレータからの遅延特徴の選択的抽出,メモリマップされた配列への切り替えなど,オリジナルのフレームワークからいくつかの適応を行う。
血栓性微小血管症における高分解能タイルデータセット上でHDGANを評価し,高分解能画像アノテーション生成タスクにおいて高い性能を示した。
論文 参考訳(メタデータ) (2022-07-06T14:33:50Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - ContIG: Self-supervised Multimodal Contrastive Learning for Medical
Imaging with Genetics [4.907551775445731]
本研究では、ラベルのない医療画像と遺伝データの大規模なデータセットから学習できる自己教師付き手法であるContIGを提案する。
提案手法は特徴空間における画像といくつかの遺伝的モダリティをコントラスト的損失を用いて整列させる。
また、我々のモデルで学んだ特徴に関するゲノムワイド・アソシエーション研究を行い、画像と遺伝データの間の興味深い関係を明らかにする。
論文 参考訳(メタデータ) (2021-11-26T11:06:12Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。