論文の概要: Unleashing the Power of Electrocardiograms: A novel approach for Patient
Identification in Healthcare Systems with ECG Signals
- arxiv url: http://arxiv.org/abs/2302.06529v2
- Date: Thu, 6 Jul 2023 08:57:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 18:01:11.631820
- Title: Unleashing the Power of Electrocardiograms: A novel approach for Patient
Identification in Healthcare Systems with ECG Signals
- Title(参考訳): 心電図のパワーを解き放つ : 心電図信号を用いた医療システムにおける新しい患者同定法
- Authors: Caterina Fuster-Barcel\'o, Carmen C\'amara, Pedro Peris-L\'opez
- Abstract要約: 本稿では,心電図信号を用いた医療システムにおける患者識別のための新しいアプローチを提案する。
畳み込みニューラルネットワークは、ECG信号から抽出された画像に基づいてユーザを分類するために使用される。
- 参考スコア(独自算出の注目度): 0.696125353550498
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Over the course of the past two decades, a substantial body of research has
substantiated the viability of utilising cardiac signals as a biometric
modality. This paper presents a novel approach for patient identification in
healthcare systems using electrocardiogram signals. A convolutional neural
network is used to classify users based on images extracted from ECG signals.
The proposed identification system is evaluated in multiple databases,
providing a comprehensive understanding of its potential in real-world
scenarios. The impact of Cardiovascular Diseases on generic user identification
has been largely overlooked in previous studies. The presented method takes
into account the cardiovascular condition of the patients, ensuring that the
results obtained are not biased or limited. Furthermore, the results obtained
are consistent and reliable, with lower error rates and higher accuracy
metrics, as demonstrated through extensive experimentation. All these features
make the proposed method a valuable contribution to the field of patient
identification in healthcare systems, and make it a strong contender for
practical applications.
- Abstract(参考訳): 過去20年間に渡り、心臓のシグナルを生体計測のモダリティとして活用する可能性についてかなりの研究が続けられてきた。
本稿では心電図信号を用いた医療システムにおける患者識別のための新しいアプローチを提案する。
畳み込みニューラルネットワークは、ECG信号から抽出された画像に基づいてユーザを分類するために使用される。
提案する識別システムは複数のデータベースで評価され,実世界のシナリオにおけるその可能性の包括的理解を提供する。
心臓血管疾患の一般ユーザ識別への影響は、これまでの研究では概ね見過ごされてきた。
本手法は, 患者の心血管状態を考慮し, 得られた結果が偏りや制限がないことを保証する。
さらに、得られた結果は、広範囲な実験によって示されるように、低いエラー率と高い精度のメトリクスで、一貫性と信頼性がある。
これらの機能はすべて、医療システムにおける患者識別の分野において、提案手法が貴重な貢献となり、実用的応用の強力な候補となる。
関連論文リスト
- ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks [0.0]
臨床的には, 誤診患者に対する心電図記録の割り当ては不注意に発生することがある。
本稿では,2つの心電図が同一患者に由来するかどうかを判定する,小型で効率的な神経ネットワークモデルを提案する。
PTB-XL 上でのギャラリープローブによる患者識別において、760 倍のパラメータを用いて最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-09T18:53:25Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
本稿では,ECG信号の自動診断のためのGAN(Generative Adversarial Network)を用いた2階層型階層型ディープラーニングフレームワークを提案する。
第1レベルのモデルはメモリ拡張DeepオートエンコーダとGANで構成されており、異常信号と通常のECGを区別して異常検出を行う。
第2レベルの学習は、異なる不整脈識別のための堅牢な多クラス分類を目指している。
論文 参考訳(メタデータ) (2022-10-19T12:29:05Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
本稿では,8種類の心不整脈と正常リズムの高精度検出のための光深度学習手法を提案する。
各種心電図信号を用いた不整脈分類モデルの試作と試験を行った。
論文 参考訳(メタデータ) (2022-08-29T05:01:04Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
本稿では,心電図信号に基づく心疾患検出の堅牢性を高めるために,生理学的に着想を得たデータ拡張手法を提案する。
我々は、ワッサーシュタイン空間の測地線に沿った他のクラスに対してデータ分布を摂動することで、拡張されたサンプルを得る。
12個の心電図信号から学習し,心臓状態の5つのカテゴリを識別できる。
論文 参考訳(メタデータ) (2022-08-02T03:14:13Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++は、CTAスキャンで脳血管ツリーをセグメンテーションし、ラベル付けするために設計されたアルゴリズムである。
閉塞血管を同定するために,脳動脈のラベル付け機構を拡張した。
本稿では,そのモデルの全ノードにおける経路の反復的体系探索という一般的な概念を紹介し,新たな対話的特徴を実現する。
論文 参考訳(メタデータ) (2022-04-26T14:20:26Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
本稿では,意図に基づく畳み込みニューラルネットワーク(ABCNN)を用いて生の心電図信号に対処し,正確な不整脈検出のための情報的依存関係を自動的に抽出する手法を提案する。
我々の主な課題は、正常な心拍から不整脈を見つけ、その間に5種類の不整脈から心疾患を正確に認識することである。
実験の結果,提案するABCNNは広く使用されているベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-08-18T14:55:46Z) - Multimodal Gait Recognition for Neurodegenerative Diseases [38.06704951209703]
3つの神経変性疾患の歩容差を学習するための新しいハイブリッドモデルを提案する。
新しい相関メモリニューラルネットワークアーキテクチャは、時間的特徴を抽出するために設計されている。
いくつかの最先端技術と比較して,提案手法はより正確な分類結果を示す。
論文 参考訳(メタデータ) (2021-01-07T10:17:11Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。