論文の概要: Multi-Carrier NOMA-Empowered Wireless Federated Learning with Optimal
Power and Bandwidth Allocation
- arxiv url: http://arxiv.org/abs/2302.06730v1
- Date: Mon, 13 Feb 2023 22:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 16:56:47.042325
- Title: Multi-Carrier NOMA-Empowered Wireless Federated Learning with Optimal
Power and Bandwidth Allocation
- Title(参考訳): 最適電力と帯域割り当てを用いたマルチキャリアNOMAを用いた無線フェデレーション学習
- Authors: Weicai Li, Tiejun Lv, Yashuai Cao, Wei Ni, and Mugen Peng
- Abstract要約: 無線連合学習(WFL)は、アップリンクにおけるボトルネック通信を行い、各グローバルアグリゲーションラウンドでローカルモデルをアップロードできるユーザ数を制限する。
本稿では,マルチキャリア非直交多重アクセス (MC-NOMA) WFL を提案する。
畳み込みニューラルネットワークと18層住宅ネットワークを併用することにより、提案したMC-NOMA WFLは通信を効率よく削減し、局所モデルトレーニング時間を延長し、既存の代替品と比較して40%以上の収束を加速することができる。
- 参考スコア(独自算出の注目度): 31.80744279032665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless federated learning (WFL) undergoes a communication bottleneck in
uplink, limiting the number of users that can upload their local models in each
global aggregation round. This paper presents a new multi-carrier
non-orthogonal multiple-access (MC-NOMA)-empowered WFL system under an adaptive
learning setting of Flexible Aggregation. Since a WFL round accommodates both
local model training and uploading for each user, the use of Flexible
Aggregation allows the users to train different numbers of iterations per
round, adapting to their channel conditions and computing resources. The key
idea is to use MC-NOMA to concurrently upload the local models of the users,
thereby extending the local model training times of the users and increasing
participating users. A new metric, namely, Weighted Global Proportion of
Trained Mini-batches (WGPTM), is analytically established to measure the
convergence of the new system. Another important aspect is that we maximize the
WGPTM to harness the convergence of the new system by jointly optimizing the
transmit powers and subchannel bandwidths. This nonconvex problem is converted
equivalently to a tractable convex problem and solved efficiently using
variable substitution and Cauchy's inequality. As corroborated experimentally
using a convolutional neural network and an 18-layer residential network, the
proposed MC-NOMA WFL can efficiently reduce communication delay, increase local
model training times, and accelerate the convergence by over 40%, compared to
its existing alternative.
- Abstract(参考訳): ワイヤレスフェデレーション学習(wfl)は、uplinkにおけるコミュニケーションのボトルネックとなり、グローバルアグリゲーションラウンド毎にローカルモデルをアップロードできるユーザ数が制限される。
本稿では,フレキシブルアグリゲーションの適応学習環境下でのマルチキャリア非orthogonal multi-access (mc-noma)-empowered wflシステムを提案する。
wflラウンドは、各ユーザのローカルモデルトレーニングとアップロードの両方に対応しているので、フレキシブルアグリゲーションを使用することで、1ラウンドあたりのさまざまなイテレーションをトレーニングでき、チャネル条件や計算リソースに適応することができる。
重要なアイデアは、mc-nomaを使用してユーザのローカルモデルを同時アップロードすることで、ユーザのローカルモデルのトレーニング時間を延長し、参加ユーザを増やすことだ。
WGPTM(Weighted Global Proportion of Trained Mini-batches)と呼ばれる新しい指標が、新システムの収束度を測定するために分析的に確立されている。
もう一つの重要な側面は、WGPTMを最大化して、送信電力とサブチャネル帯域幅を最適化することで、新しいシステムの収束を利用することである。
この非凸問題は可搬凸問題と等価に変換され、変数置換とコーシーの不等式を用いて効率的に解かれる。
畳み込みニューラルネットワークと18層住宅ネットワークを併用した実験により,提案したMC-NOMA WFLは通信遅延を効率よく低減し,局所モデルトレーニング時間を短縮し,既存の代替品と比較して40%以上の収束を加速することができる。
関連論文リスト
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - Training Latency Minimization for Model-Splitting Allowed Federated Edge
Learning [16.8717239856441]
我々は,深層ニューラルネットワーク(DNN)の訓練において,クライアントが直面する計算能力の不足を軽減するためのモデル分割許容FL(SFL)フレームワークを提案する。
同期したグローバルアップデート設定では、グローバルトレーニングを完了するためのレイテンシは、クライアントがローカルトレーニングセッションを完了するための最大レイテンシによって決定される。
この混合整数非線形計画問題の解法として,AIモデルのカット層と他のパラメータの量的関係に適合する回帰法を提案し,TLMPを連続的な問題に変換する。
論文 参考訳(メタデータ) (2023-07-21T12:26:42Z) - Joint Age-based Client Selection and Resource Allocation for
Communication-Efficient Federated Learning over NOMA Networks [8.030674576024952]
FL(Federated Learning)では、分散クライアントは、自身のトレーニングデータをローカルに保持しながら、共有グローバルモデルを共同でトレーニングすることができる。
本稿では,非直交多重アクセス(NOMA)を利用した無線ネットワーク上でのFLにおける各ラウンドの総時間消費を最小化することを目的とした,クライアント選択とリソース割り当ての協調最適化問題を定式化する。
さらに、各ラウンドで選択されていないクライアントのFLモデルを予測し、FL性能をさらに向上するために、サーバサイド人工知能ニューラルネットワーク(ANN)を提案する。
論文 参考訳(メタデータ) (2023-04-18T13:58:16Z) - Hierarchical Personalized Federated Learning Over Massive Mobile Edge
Computing Networks [95.39148209543175]
大規模MECネットワーク上でPFLをデプロイするアルゴリズムである階層型PFL(HPFL)を提案する。
HPFLは、最適帯域割り当てを共同で決定しながら、トレーニング損失最小化とラウンドレイテンシ最小化の目的を組み合わせる。
論文 参考訳(メタデータ) (2023-03-19T06:00:05Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
本稿では,2つの相乗的技術,フェデレートラーニング(FL)と幅調整可能なスリムブルニューラルネットワーク(SNN)を統合することを目的とする。
FLは、ローカルに訓練されたモバイルデバイスのモデルを交換することによって、データのプライバシを保護している。しかしながら、SNNは、特に時間変化のあるチャネル条件との無線接続下では、非自明である。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2021-12-05T11:17:17Z) - FedFog: Network-Aware Optimization of Federated Learning over Wireless
Fog-Cloud Systems [40.421253127588244]
フェデレートラーニング(FL)は、訓練されたローカルパラメータを定期的に集約することで、複数のエッジユーザにわたって大規模な分散機械学習タスクを実行することができる。
まず,フォグサーバにおける勾配パラメータの局所的な集約と,クラウドでのグローバルトレーニング更新を行うための効率的なFLアルゴリズム(FedFog)を提案する。
論文 参考訳(メタデータ) (2021-07-04T08:03:15Z) - Convergence Time Optimization for Federated Learning over Wireless
Networks [160.82696473996566]
無線ユーザが(ローカル収集データを用いて訓練した)ローカルFLモデルを基地局(BS)に送信する無線ネットワークを考える。
中央コントローラとして機能するBSは、受信したローカルFLモデルを使用してグローバルFLモデルを生成し、それを全ユーザにブロードキャストする。
無線ネットワークにおけるリソースブロック(RB)の数が限られているため、ローカルFLモデルパラメータをBSに送信するために選択できるのは一部のユーザのみである。
各ユーザが独自のトレーニングデータサンプルを持っているため、BSは、収束したグローバルFLモデルを生成するために、すべてのローカルユーザFLモデルを含むことを好んでいる。
論文 参考訳(メタデータ) (2020-01-22T01:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。