論文の概要: HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces
- arxiv url: http://arxiv.org/abs/2302.06793v1
- Date: Tue, 14 Feb 2023 02:25:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 16:39:19.284288
- Title: HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces
- Title(参考訳): HR-NeuS:ニューラルネットワークによる高周波表面形状の復元
- Authors: Erich Liang, Kenan Deng, Xi Zhang, Chun-Kai Wang
- Abstract要約: 我々は新しい暗黙表面再構成法であるHigh-Resolution NeuSを提案する。
HR-NeuSは大規模な再構成精度を維持しながら高周波表面形状を復元する。
我々は,DTUおよびBlendedMVSデータセットを用いた実験により,従来の手法と同等の精度で定性的に詳細かつ定量的な3次元測地を生成できることを実証した。
- 参考スコア(独自算出の注目度): 6.382138631957651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in neural implicit surfaces for multi-view 3D reconstruction
primarily focus on improving large-scale surface reconstruction accuracy, but
often produce over-smoothed geometries that lack fine surface details. To
address this, we present High-Resolution NeuS (HR-NeuS), a novel neural
implicit surface reconstruction method that recovers high-frequency surface
geometry while maintaining large-scale reconstruction accuracy. We achieve this
by utilizing (i) multi-resolution hash grid encoding rather than positional
encoding at high frequencies, which boosts our model's expressiveness of local
geometry details; (ii) a coarse-to-fine algorithmic framework that selectively
applies surface regularization to coarse geometry without smoothing away fine
details; (iii) a coarse-to-fine grid annealing strategy to train the network.
We demonstrate through experiments on DTU and BlendedMVS datasets that our
approach produces 3D geometries that are qualitatively more detailed and
quantitatively of similar accuracy compared to previous approaches.
- Abstract(参考訳): マルチビュー3次元再構成のためのニューラル暗黙表面の最近の進歩は、主に大規模な表面再構成の精度向上に焦点を当てているが、細かな表面の詳細を欠く過度に平滑なジオメトリーをしばしば生み出す。
そこで本研究では,大規模再構成精度を維持しつつ高周波表面形状を復元する新しい神経暗黙的表面再構成法であるhr-neus(high- resolution neus)を提案する。
私たちはこれを活用し
(i)高周波の位置符号化ではなくマルチレゾリューションのハッシュグリッド符号化は,我々のモデルの局所幾何学的詳細の表現性を高める。
(II)細部を滑らかにすることなく、表面正則化を粗い幾何学に選択的に適用する粗いアルゴリズムの枠組み
(iii)ネットワークを訓練するための細かなグリッドアニーリング戦略。
我々は,DTUおよびBlendedMVSデータセットを用いた実験により,従来の手法と同等の精度で定性的に詳細かつ定量的に3次元測地を生成することを示した。
関連論文リスト
- NASM: Neural Anisotropic Surface Meshing [38.8654207201197]
本稿では、異方性表面メッシュのための学習に基づく新しい手法NASMを提案する。
鍵となるアイデアは、入力メッシュを高次元ユークリッド埋め込み空間に埋め込み、曲率ベースの異方性計量を保存することである。
そこで,本研究では,新たに生成した高次元埋め込みにおける特徴感リメッシングを提案し,鮮明な幾何学的特徴を自動キャプチャする。
論文 参考訳(メタデータ) (2024-10-30T15:20:10Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
AniSDF(AniSDF)は,高忠実度3次元再構成のための物理に基づく符号化による融合粒度ニューラルサーフェスを学習する新しいアプローチである。
本手法は, 幾何再構成と新規ビュー合成の両面において, SDF法の品質を飛躍的に向上させる。
論文 参考訳(メタデータ) (2024-10-02T03:10:38Z) - ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
微妙な幾何を同時に復元し、異なる特徴を持つ領域をまたいだ滑らかさを保つことは自明ではない。
そこで我々は,ND-SDFを提案する。ND-SDFは,通常のシーンとそれ以前のシーンの角偏差を表す正規偏向場を学習する。
本手法は, 壁面や床面などのスムーズなテクスチャ構造を得るだけでなく, 複雑な構造の幾何学的詳細も保存する。
論文 参考訳(メタデータ) (2024-08-22T17:59:01Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - SplatFace: Gaussian Splat Face Reconstruction Leveraging an Optimizable Surface [7.052369521411523]
SplatFaceは3次元人間の顔再構成のための新しいガウススプレイティングフレームワークであり、正確な事前決定幾何に依存しない。
本手法は,高品質な新規ビューレンダリングと高精度な3Dメッシュ再構成の両方を同時に実現するように設計されている。
論文 参考訳(メタデータ) (2024-03-27T17:32:04Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
我々は,3次元形状を点から復元するという課題に対処する形状再構成アーキテクチャであるニューラルポアソン表面再構成(nPSR)を導入する。
nPSRには2つの大きな利点がある: まず、高分解能評価において同等の性能を達成しつつ、低分解能データの効率的なトレーニングを可能にする。
全体として、ニューラル・ポアソン表面の再構成は、形状再構成における古典的なディープニューラルネットワークの限界を改良するだけでなく、再構築品質、走行時間、分解能非依存の観点からも優れた結果が得られる。
論文 参考訳(メタデータ) (2023-08-03T13:56:07Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
そこで我々はD-NeuSを提案する。D-NeuSは、微細な幾何学的詳細を復元できるボリュームレンダリング型ニューラル暗示表面再構成法である。
我々は,SDFゼロクロスの補間により表面点に多視点の特徴的整合性を付与する。
本手法は,高精度な表面を細部で再構成し,その性能を向上する。
論文 参考訳(メタデータ) (2022-11-21T10:06:09Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z) - Geo-Neus: Geometry-Consistent Neural Implicit Surfaces Learning for
Multi-view Reconstruction [41.43563122590449]
多視点再構成のための幾何一貫性のあるニューラルサーフェス学習を提案する。
提案手法は, 複雑な薄板構造と大きな平滑領域の両方において, 高品質な表面再構成を実現する。
論文 参考訳(メタデータ) (2022-05-31T14:52:07Z) - Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid
Representations [21.64457003420851]
我々は,幾何認識によるサンプリングと正規化を課すことができるハイブリッドニューラルサーフェス表現を開発した。
本手法は、多視点画像や点群から神経暗黙面を再構築する技術を改善するために適用できることを実証する。
論文 参考訳(メタデータ) (2020-12-11T15:51:04Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。