論文の概要: SolidGS: Consolidating Gaussian Surfel Splatting for Sparse-View Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2412.15400v1
- Date: Thu, 19 Dec 2024 21:04:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 18:46:08.730823
- Title: SolidGS: Consolidating Gaussian Surfel Splatting for Sparse-View Surface Reconstruction
- Title(参考訳): SolidGS: スパースビュー表面再構成のためのガウスサーフェルスプレイティングの統合
- Authors: Zhuowen Shen, Yuan Liu, Zhang Chen, Zhong Li, Jiepeng Wang, Yongqing Liang, Zhengming Yu, Jingdong Zhang, Yi Xu, Scott Schaefer, Xin Li, Wenping Wang,
- Abstract要約: この問題に対処するために,SolidGSと呼ばれる新しい手法を提案する。
再構成された幾何は多視点では非常に不整合であることがわかった。
幾何学的正規化と単分子正規化の助けを借りて,スパース面の再構成における優れた性能を実現する。
- 参考スコア(独自算出の注目度): 48.228533595941556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian splatting has achieved impressive improvements for both novel-view synthesis and surface reconstruction from multi-view images. However, current methods still struggle to reconstruct high-quality surfaces from only sparse view input images using Gaussian splatting. In this paper, we propose a novel method called SolidGS to address this problem. We observed that the reconstructed geometry can be severely inconsistent across multi-views, due to the property of Gaussian function in geometry rendering. This motivates us to consolidate all Gaussians by adopting a more solid kernel function, which effectively improves the surface reconstruction quality. With the additional help of geometrical regularization and monocular normal estimation, our method achieves superior performance on the sparse view surface reconstruction than all the Gaussian splatting methods and neural field methods on the widely used DTU, Tanks-and-Temples, and LLFF datasets.
- Abstract(参考訳): ガウススプラッティングは、新規ビュー合成と多視点画像からの表面再構成の両方において、顕著な改善が達成されている。
しかし、現在の手法は、ガウススプラッティングを用いたスパースビューの入力画像のみから高品質な表面を再構築するのに依然として苦労している。
本稿では,この問題に対処するためのSolidGSと呼ばれる新しい手法を提案する。
再構成された幾何は、幾何レンダリングにおけるガウス関数の性質のため、多視点では非常に矛盾する可能性があることを観察した。
これにより、より固いカーネル関数を採用することにより、全てのガウスを統合し、表面再構成の質を効果的に向上する。
幾何学的正規化と単分子正規化の助力により,広義のDTU, タンク・アンド・テンプル, LLFFデータセット上のガウス的スプラッティング法およびニューラルフィールド法よりも疎視面再構成に優れる。
関連論文リスト
- Sparse2DGS: Geometry-Prioritized Gaussian Splatting for Surface Reconstruction from Sparse Views [45.125032766506536]
完全かつ正確な再構成のためのMVS-d Gaussian Splatting PipelineであるSparse2DGSを提案する。
我々の重要な洞察は、幾何学的優先順位付けされた拡張スキームを組み込むことであり、不適切な条件下での直接的かつ堅牢な幾何学的学習を可能にする。
Sparse2DGSは、NeRFベースの微調整方式よりも2倍の速さで既存の手法よりも優れています。
論文 参考訳(メタデータ) (2025-04-29T02:47:02Z) - Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes [48.72107407035312]
表面再構成は、配向点雲から表面を再構成するための広く用いられるアルゴリズムである。
近年の研究では、ガウス過程モデルによる再構成面への不確実性の導入が提案されている。
その結果、我々のアプローチはよりクリーンで、より原理的で、より柔軟な表面再構築パイプラインを提供することを示している。
論文 参考訳(メタデータ) (2025-03-24T20:47:51Z) - RoGSplat: Learning Robust Generalizable Human Gaussian Splatting from Sparse Multi-View Images [39.03889696169877]
RoGSplatは、スパースマルチビュー画像から見えない人間の高忠実な新しいビューを合成するための新しいアプローチである。
提案手法は,新しいビュー合成とクロスデータセットの一般化において,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2025-03-18T12:18:34Z) - GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction [79.42244344704154]
GausSurfは、テクスチャリッチな領域におけるマルチビュー一貫性と、シーンのテクスチャレスな領域における通常の事前の幾何学的ガイダンスを採用している。
本手法は,再現性や計算時間の観点から,最先端の手法を超越した手法である。
論文 参考訳(メタデータ) (2024-11-29T03:54:54Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
高品質な再構成のための神経信号距離場(SDF)とプリミティブを結合する新しい手法であるMonoGSDFを紹介する。
任意のスケールのシーンを扱うために,ロバストな一般化のためのスケーリング戦略を提案する。
実世界のデータセットの実験は、効率を保ちながら、以前の方法よりも優れています。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views [9.175560202201819]
3Dガウススプラッティング(3DGS)はシーンを正確に表現するための効率的なアプローチとして登場した。
本稿では,ノイズの多い3DGS表現とスムーズな3Dメッシュ表現とのギャップを埋めるための新しい手法を提案する。
私たちは、オリジナルのトレーニングポーズに対応するステレオアライメントされたイメージのペアをレンダリングし、ペアをステレオモデルに入力して深度プロファイルを取得し、最後にすべてのプロファイルを融合して単一のメッシュを得る。
論文 参考訳(メタデータ) (2024-04-02T10:13:18Z) - SplatFace: Gaussian Splat Face Reconstruction Leveraging an Optimizable Surface [7.052369521411523]
SplatFaceは3次元人間の顔再構成のための新しいガウススプレイティングフレームワークであり、正確な事前決定幾何に依存しない。
本手法は,高品質な新規ビューレンダリングと高精度な3Dメッシュ再構成の両方を同時に実現するように設計されている。
論文 参考訳(メタデータ) (2024-03-27T17:32:04Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
ガウススプレイティング最適化の過程で、その構造が意図的に保存されていない場合、シーンの幾何学は徐々に悪化する。
我々はこの問題を緩和するためにGeoGaussianと呼ばれる新しいアプローチを提案する。
提案するパイプラインは、新しいビュー合成と幾何再構成において最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-03-17T20:06:41Z) - HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces [6.382138631957651]
我々は新しい暗黙表面再構成法であるHigh-Resolution NeuSを提案する。
HR-NeuSは大規模な再構成精度を維持しながら高周波表面形状を復元する。
我々は,DTUおよびBlendedMVSデータセットを用いた実験により,従来の手法と同等の精度で定性的に詳細かつ定量的な3次元測地を生成できることを実証した。
論文 参考訳(メタデータ) (2023-02-14T02:25:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。