Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks
- URL: http://arxiv.org/abs/2302.07260v5
- Date: Thu, 14 Sep 2023 15:10:01 GMT
- Title: Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks
- Authors: Mohamed Aziz Bhouri and Michael Joly and Robert Yu and Soumalya Sarkar
and Paris Perdikaris
- Abstract summary: We propose a deep learning framework for BO and sequential decision making based on bootstrapped ensembles of neural architectures with randomized priors.
We show that the proposed framework can approximate functional relationships between design variables and quantities of interest, even in cases where the latter take values in high-dimensional vector spaces or even infinite-dimensional function spaces.
We test the proposed framework against state-of-the-art methods for BO and demonstrate superior performance across several challenging tasks with high-dimensional outputs.
- Score: 3.0468934705223774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several fundamental problems in science and engineering consist of global
optimization tasks involving unknown high-dimensional (black-box) functions
that map a set of controllable variables to the outcomes of an expensive
experiment. Bayesian Optimization (BO) techniques are known to be effective in
tackling global optimization problems using a relatively small number objective
function evaluations, but their performance suffers when dealing with
high-dimensional outputs. To overcome the major challenge of dimensionality,
here we propose a deep learning framework for BO and sequential decision making
based on bootstrapped ensembles of neural architectures with randomized priors.
Using appropriate architecture choices, we show that the proposed framework can
approximate functional relationships between design variables and quantities of
interest, even in cases where the latter take values in high-dimensional vector
spaces or even infinite-dimensional function spaces. In the context of BO, we
augmented the proposed probabilistic surrogates with re-parameterized Monte
Carlo approximations of multiple-point (parallel) acquisition functions, as
well as methodological extensions for accommodating black-box constraints and
multi-fidelity information sources. We test the proposed framework against
state-of-the-art methods for BO and demonstrate superior performance across
several challenging tasks with high-dimensional outputs, including a
constrained multi-fidelity optimization task involving shape optimization of
rotor blades in turbo-machinery.
Related papers
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization [37.339567743948955]
We present a novel Bayesian optimization framework specifically tailored to address the limitations of BO.
Our key contribution is a highly scalable, sample-based acquisition function that performs a non-dominated sorting of objectives.
We show that our acquisition function in combination with different Bayesian neural network surrogates is effective in data-intensive environments with a minimal number of iterations.
arXiv Detail & Related papers (2023-06-01T19:10:57Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces [14.03847432040056]
We argue that a surrogate model defined on sparse axis-aligned subspaces offer an attractive compromise between flexibility and parsimony.
We demonstrate that our approach, which relies on Hamiltonian Monte Carlo for inference, can rapidly identify sparse subspaces relevant to modeling the unknown objective function.
arXiv Detail & Related papers (2021-02-27T23:06:24Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - High-Dimensional Bayesian Optimization via Tree-Structured Additive
Models [40.497123136157946]
We consider generalized additive models in which low-dimensional functions with overlapping subsets of variables are composed to model a high-dimensional target function.
Our goal is to lower the computational resources required and facilitate faster model learning.
We demonstrate and discuss the efficacy of our approach via a range of experiments on synthetic functions and real-world datasets.
arXiv Detail & Related papers (2020-12-24T03:56:44Z) - High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds [0.0]
We propose to exploit the geometry of non-Euclidean search spaces, which often arise in a variety of domains, to learn structure-preserving mappings.
Our approach features geometry-aware Gaussian processes that jointly learn a nested-manifold embedding and a representation of the objective function in the latent space.
arXiv Detail & Related papers (2020-10-21T11:24:11Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z) - Multi-Fidelity Bayesian Optimization via Deep Neural Networks [19.699020509495437]
In many applications, the objective function can be evaluated at multiple fidelities to enable a trade-off between the cost and accuracy.
We propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can flexibly capture all kinds of complicated relationships between the fidelities.
We show the advantages of our method in both synthetic benchmark datasets and real-world applications in engineering design.
arXiv Detail & Related papers (2020-07-06T23:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.