High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces
- URL: http://arxiv.org/abs/2103.00349v1
- Date: Sat, 27 Feb 2021 23:06:24 GMT
- Title: High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces
- Authors: David Eriksson and Martin Jankowiak
- Abstract summary: We argue that a surrogate model defined on sparse axis-aligned subspaces offer an attractive compromise between flexibility and parsimony.
We demonstrate that our approach, which relies on Hamiltonian Monte Carlo for inference, can rapidly identify sparse subspaces relevant to modeling the unknown objective function.
- Score: 14.03847432040056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization (BO) is a powerful paradigm for efficient optimization
of black-box objective functions. High-dimensional BO presents a particular
challenge, in part because the curse of dimensionality makes it difficult to
define as well as do inference over a suitable class of surrogate models. We
argue that Gaussian process surrogate models defined on sparse axis-aligned
subspaces offer an attractive compromise between flexibility and parsimony. We
demonstrate that our approach, which relies on Hamiltonian Monte Carlo for
inference, can rapidly identify sparse subspaces relevant to modeling the
unknown objective function, enabling sample-efficient high-dimensional BO. In
an extensive suite of experiments comparing to existing methods for
high-dimensional BO we demonstrate that our algorithm, Sparse Axis-Aligned
Subspace BO (SAASBO), achieves excellent performance on several synthetic and
real-world problems without the need to set problem-specific hyperparameters.
Related papers
- An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
We propose a two-step optimization framework to extend BO to high-dimensional settings.
Our algorithm offers the flexibility to operate these steps either concurrently or in sequence.
Numerical experiments validate the efficacy of our method in challenging scenarios.
arXiv Detail & Related papers (2024-03-08T16:21:08Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
We present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within Bayesian optimization.
At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations.
Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse.
arXiv Detail & Related papers (2024-02-06T11:44:06Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Predictive Modeling through Hyper-Bayesian Optimization [60.586813904500595]
We propose a novel way of integrating model selection and BO for the single goal of reaching the function optima faster.
The algorithm moves back and forth between BO in the model space and BO in the function space, where the goodness of the recommended model is captured.
In addition to improved sample efficiency, the framework outputs information about the black-box function.
arXiv Detail & Related papers (2023-08-01T04:46:58Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
We propose a deep learning framework for BO and sequential decision making based on bootstrapped ensembles of neural architectures with randomized priors.
We show that the proposed framework can approximate functional relationships between design variables and quantities of interest, even in cases where the latter take values in high-dimensional vector spaces or even infinite-dimensional function spaces.
We test the proposed framework against state-of-the-art methods for BO and demonstrate superior performance across several challenging tasks with high-dimensional outputs.
arXiv Detail & Related papers (2023-02-14T18:55:21Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - A model aggregation approach for high-dimensional large-scale
optimization [2.1104930506758275]
We propose a model aggregation method in the Bayesian optimization (MamBO) algorithm for efficiently solving high-dimensional large-scale optimization problems.
MamBO uses a combination of subsampling and subspace embeddings to collectively address high dimensionality and large-scale issues.
Our proposed model aggregation method reduces these lower-dimensional surrogate model risks and improves the robustness of the BO algorithm.
arXiv Detail & Related papers (2022-05-16T08:58:42Z) - High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds [0.0]
We propose to exploit the geometry of non-Euclidean search spaces, which often arise in a variety of domains, to learn structure-preserving mappings.
Our approach features geometry-aware Gaussian processes that jointly learn a nested-manifold embedding and a representation of the objective function in the latent space.
arXiv Detail & Related papers (2020-10-21T11:24:11Z) - Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
Spaces [63.22864716473051]
We propose a novel BO algorithm which expands (and shifts) the search space over iterations.
We show theoretically that for both our algorithms, the cumulative regret grows at sub-linear rates.
arXiv Detail & Related papers (2020-09-05T14:24:40Z) - An Asymptotically Optimal Multi-Armed Bandit Algorithm and
Hyperparameter Optimization [48.5614138038673]
We propose an efficient and robust bandit-based algorithm called Sub-Sampling (SS) in the scenario of hyper parameter search evaluation.
We also develop a novel hyper parameter optimization algorithm called BOSS.
Empirical studies validate our theoretical arguments of SS and demonstrate the superior performance of BOSS on a number of applications.
arXiv Detail & Related papers (2020-07-11T03:15:21Z) - Misspecification-robust likelihood-free inference in high dimensions [13.934999364767918]
We introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner.
Our approach achieves computational scalability for higher dimensional parameter spaces by using separate acquisition functions and discrepancies for each parameter.
The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing modularised ABC methods.
arXiv Detail & Related papers (2020-02-21T16:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.