論文の概要: Unsupervised physics-informed neural network in reaction-diffusion
biology models (Ulcerative colitis and Crohn's disease cases) A preliminary
study
- arxiv url: http://arxiv.org/abs/2302.07405v1
- Date: Wed, 15 Feb 2023 00:06:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 16:09:46.924124
- Title: Unsupervised physics-informed neural network in reaction-diffusion
biology models (Ulcerative colitis and Crohn's disease cases) A preliminary
study
- Title(参考訳): 反応拡散生物学モデルにおける教師なし物理情報ニューラルネットワーク(潰瘍性大腸炎とクローン病例)
- Authors: Ahmed Rebai, Louay Boukhris, Radhi Toujani, Ahmed Gueddiche, Fayad Ali
Banna, Fares Souissi, Ahmed Lasram, Elyes Ben Rayana, Hatem Zaag
- Abstract要約: 偏微分方程式(PDE)のクラスにおける物理情報ニューラルネットワーク(PINN)の可能性について検討する。
これらのPDEはクローン病や潰瘍性大腸炎などの慢性炎症性腸疾患の伝播をモデル化するために用いられる。
我々は, PINN法といくつかの線形PDEと非線形PDEの関係を, 生物学との関係で定量化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We propose to explore the potential of physics-informed neural networks
(PINNs) in solving a class of partial differential equations (PDEs) used to
model the propagation of chronic inflammatory bowel diseases, such as Crohn's
disease and ulcerative colitis. An unsupervised approach was privileged during
the deep neural network training. Given the complexity of the underlying
biological system, characterized by intricate feedback loops and limited
availability of high-quality data, the aim of this study is to explore the
potential of PINNs in solving PDEs. In addition to providing this exploratory
assessment, we also aim to emphasize the principles of reproducibility and
transparency in our approach, with a specific focus on ensuring the robustness
and generalizability through the use of artificial intelligence. We will
quantify the relevance of the PINN method with several linear and non-linear
PDEs in relation to biology. However, it is important to note that the final
solution is dependent on the initial conditions, chosen boundary conditions,
and neural network architectures.
- Abstract(参考訳): クローン病や潰瘍性大腸炎などの慢性炎症性腸疾患の伝播をモデル化するために用いられる偏微分方程式(PDE)のクラスを解く際の物理情報ニューラルネットワーク(PINN)の可能性を検討する。
教師なしのアプローチは、ディープニューラルネットワークトレーニング中に特権化された。
本研究の目的は, 複雑なフィードバックループと高品質データの利用率の制限を特徴とする生体システムの複雑さを考慮し, PDEの解決におけるPINNの可能性を探ることである。
この探索的評価の提供に加えて,我々は,我々のアプローチにおける再現性と透明性の原則を強調し,人工知能の利用による堅牢性と一般化性を保証することに注力する。
我々は, PINN法といくつかの線形PDEと非線形PDEの関係を, 生物学との関係で定量化する。
しかし、最終解が初期条件、選択された境界条件、ニューラルネットワークアーキテクチャに依存することに注意する必要がある。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - An Association Test Based on Kernel-Based Neural Networks for Complex
Genetic Association Analysis [0.8221435109014762]
従来のニューラルネットワークと線形混合モデルの強度を相乗化するカーネルベースニューラルネットワークモデル(KNN)を開発した。
MINQUEに基づく遺伝子変異と表現型との結合性を評価する試験。
線形および非線形/非付加的遺伝子効果の評価と解釈のための2つの追加試験。
論文 参考訳(メタデータ) (2023-12-06T05:02:28Z) - A Kernel-Based Neural Network Test for High-dimensional Sequencing Data
Analysis [0.8221435109014762]
シーケンシングデータの複雑な関連解析のための新しいカーネルベースニューラルネットワーク(KNN)テストを導入する。
KNNに基づいて、高次元遺伝データの関心の表現型との結合性を評価するために、ウォルド型試験が導入された。
論文 参考訳(メタデータ) (2023-12-05T16:06:23Z) - Correlative Information Maximization: A Biologically Plausible Approach
to Supervised Deep Neural Networks without Weight Symmetry [43.584567991256925]
本稿では,生体神経ネットワークにおける信号伝達を前方方向と後方方向の両方で記述するための新しい規範的アプローチを提案する。
このフレームワークは、従来のニューラルネットワークとバックプロパゲーションアルゴリズムの生物学的評価可能性に関する多くの懸念に対処する。
提案手法は,前方信号伝搬路と後方信号伝搬路の重み対称性問題に対する自然な解法を提供する。
論文 参考訳(メタデータ) (2023-06-07T22:14:33Z) - Applications of Generative Adversarial Networks in Neuroimaging and
Clinical Neuroscience [4.394368629380544]
GAN(Generative Adversarial Network)は,多くの分野において有効なディープラーニングモデルである。
GANは、空間的に複雑で非線形で、潜在的に微妙な病気効果を捉える能力を増強している。
本総説では, 各種神経疾患のイメージング研究におけるGANの応用について, 既存の文献を概説する。
論文 参考訳(メタデータ) (2022-06-14T18:10:00Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Fine-Grained System Identification of Nonlinear Neural Circuits [29.346746242270687]
高次元合成関数の疎非線形モデル回復問題について検討する。
重み付けの制約がシステムの回復に必要な条件であることに気付きました。
マウス網膜から収集したデータを用いて網膜神経節細胞回路を解析した。
論文 参考訳(メタデータ) (2021-06-09T21:28:27Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Finding Patient Zero: Learning Contagion Source with Graph Neural
Networks [67.3415507211942]
感染源の特定は、感染の感染経路に関する重要な洞察を与えることができる。
既存の方法はグラフ理論測度と高価なメッセージパッシングアルゴリズムを用いる。
グラフニューラルネットワーク(GNN)を用いてP0を学習し,この問題を再考する。
論文 参考訳(メタデータ) (2020-06-21T21:12:44Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。