論文の概要: Quantum Learning Theory Beyond Batch Binary Classification
- arxiv url: http://arxiv.org/abs/2302.07409v1
- Date: Wed, 15 Feb 2023 00:22:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 16:11:10.964168
- Title: Quantum Learning Theory Beyond Batch Binary Classification
- Title(参考訳): バッチバイナリ分類を超えた量子学習理論
- Authors: Preetham Mohan, Ambuj Tewari
- Abstract要約: Arunachalam と De Wolf は、量子バッチ学習関数のサンプルの複雑さが、実現可能性と設定において、対応する古典的なサンプルの複雑さと同じ形式と順序を持つことを示した。
本稿では,これを,バッチマルチクラス学習,オンライン学習,オンラインマルチクラス学習にまで拡張する。
- 参考スコア(独自算出の注目度): 20.22409095000365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Arunachalam and De Wolf (2018) showed that the sample complexity of quantum
batch learning of boolean functions, in the realizable and agnostic settings,
has the same form and order as the corresponding classical sample complexities.
In this paper, we extend this, ostensibly surprising, message to batch
multiclass learning, online boolean learning, and online multiclass learning.
For our online learning results, we first consider an adaptive adversary
variant of the classical model of Dawid and Tewari (2022). Then, we introduce
the first (to the best of our knowledge) model of online learning with quantum
examples.
- Abstract(参考訳): Arunachalam と De Wolf (2018) は、ブール関数の量子バッチ学習のサンプル複雑性が、実現可能で不可知的な設定において、対応する古典的なサンプル複雑度と同じ形式と順序を持つことを示した。
本稿では、これを表向きは意外なことに、バッチマルチクラス学習、オンラインブール学習、オンラインマルチクラス学習に拡張する。
オンライン学習の結果について、我々はまずダウィドとテワリの古典的モデル(2022年)の適応的逆変種を考える。
次に、量子実例を用いたオンライン学習の最初の(私たちの知る限りの)モデルを紹介します。
関連論文リスト
- Few measurement shots challenge generalization in learning to classify entanglement [0.0]
本稿では,古典的機械学習手法を量子アルゴリズムと組み合わせたハイブリッド量子学習技術に焦点を当てる。
いくつかの設定では、いくつかの測定ショットから生じる不確実性がエラーの主な原因であることを示す。
従来の影をベースとした推定器を導入し,その性能を向上する。
論文 参考訳(メタデータ) (2024-11-10T21:20:21Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Active Learning [3.3202982522589934]
量子ニューラルネットワークのトレーニングは通常、教師付き学習のための実質的なラベル付きトレーニングセットを必要とする。
QALはモデルを効果的にトレーニングし、完全にラベル付けされたデータセットに匹敵するパフォーマンスを達成する。
我々は,QALがランダムサンプリングベースラインに乗じて負の結果を微妙な数値実験により解明する。
論文 参考訳(メタデータ) (2024-05-28T14:39:54Z) - An inductive bias from quantum mechanics: learning order effects with
non-commuting measurements [1.759387113329159]
量子可観測物の非可換性は「順序効果」でデータを学ぶのにどのように役立つかを検討する。
与えられたタスクに適応可能な逐次学習可能な測定値からなる生成量子モデルを設計する。
我々の最初の実験シミュレーションでは、データに存在する順序効果の量が増加するにつれて、量子モデルはより非可換性を学ぶことが示されている。
論文 参考訳(メタデータ) (2023-12-06T19:18:33Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Multi-scale Feature Learning Dynamics: Insights for Double Descent [71.91871020059857]
一般化誤差の「二重降下」現象について検討する。
二重降下は、異なるスケールで学習される異なる特徴に起因する可能性がある。
論文 参考訳(メタデータ) (2021-12-06T18:17:08Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
大規模なオープンオンラインコース(MOOC)は、その柔軟性のおかげで、eラーニングの一般的な選択肢となっている。
多くの学習者とその多様な背景から、リアルタイムサポートの提供は課税されている。
MOOCインストラクターの大量の投稿と高い作業負荷により、インストラクターが介入を必要とするすべての学習者を識別できる可能性は低いです。
本稿では,モンテカルロドロップアウトと変分推論という2つの手法を用いて,学習者によるテキスト投稿のベイジアン深層学習を初めて検討する。
論文 参考訳(メタデータ) (2021-04-26T15:12:13Z) - Quantum Self-Supervised Learning [22.953284192004034]
対照的自己監督学習のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
ibmq_paris量子コンピュータ上の見えない画像を分類するために、最良の量子モデルを適用します。
論文 参考訳(メタデータ) (2021-03-26T18:00:00Z) - Aggregated Learning: A Vector-Quantization Approach to Learning Neural
Network Classifiers [48.11796810425477]
IB学習は、実際、量子化問題の特別なクラスと等価であることを示す。
ニューラルネットワークモデルを用いた分類のための新しい学習フレームワーク"集約学習"を提案する。
本フレームワークの有効性は,標準画像認識およびテキスト分類タスクに関する広範な実験を通じて検証される。
論文 参考訳(メタデータ) (2020-01-12T16:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。