論文の概要: ARGUS: Context-Based Detection of Stealthy IoT Infiltration Attacks
- arxiv url: http://arxiv.org/abs/2302.07589v1
- Date: Wed, 15 Feb 2023 11:05:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 15:15:29.956138
- Title: ARGUS: Context-Based Detection of Stealthy IoT Infiltration Attacks
- Title(参考訳): ARGUS: ステルスIoT侵入攻撃のコンテキストベース検出
- Authors: Phillip Rieger, Marco Chilese, Reham Mohamed, Markus Miettinen,
Hossein Fereidooni, Ahmad-Reza Sadeghi
- Abstract要約: IoTデバイスは、スマートホームや建物、スマートシティ、スマートファクトリの機能を制御します。
既存の攻撃検出アプローチは、主に個々のIoTデバイスを直接競合する攻撃に限られている。
我々は,IoT環境に対するコンテキストアタックを検出するための,最初の自己学習型侵入検知システムARGUSを提案する。
- 参考スコア(独自算出の注目度): 18.819756176569033
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: IoT application domains, device diversity and connectivity are rapidly
growing. IoT devices control various functions in smart homes and buildings,
smart cities, and smart factories, making these devices an attractive target
for attackers. On the other hand, the large variability of different
application scenarios and inherent heterogeneity of devices make it very
challenging to reliably detect abnormal IoT device behaviors and distinguish
these from benign behaviors. Existing approaches for detecting attacks are
mostly limited to attacks directly compromising individual IoT devices, or,
require predefined detection policies. They cannot detect attacks that utilize
the control plane of the IoT system to trigger actions in an
unintended/malicious context, e.g., opening a smart lock while the smart home
residents are absent.
In this paper, we tackle this problem and propose ARGUS, the first
self-learning intrusion detection system for detecting contextual attacks on
IoT environments, in which the attacker maliciously invokes IoT device actions
to reach its goals. ARGUS monitors the contextual setting based on the state
and actions of IoT devices in the environment. An unsupervised Deep Neural
Network (DNN) is used for modeling the typical contextual device behavior and
detecting actions taking place in abnormal contextual settings. This
unsupervised approach ensures that ARGUS is not restricted to detecting
previously known attacks but is also able to detect new attacks. We evaluated
ARGUS on heterogeneous real-world smart-home settings and achieve at least an
F1-Score of 99.64% for each setup, with a false positive rate (FPR) of at most
0.03%.
- Abstract(参考訳): IoTアプリケーションドメイン、デバイスの多様性、接続性は急速に伸びている。
iotデバイスは、スマートホームや建物、スマートシティ、スマートファクトリーなどのさまざまな機能を制御し、攻撃者にとって魅力的なターゲットとなる。
一方、異なるアプリケーションのシナリオの大きなばらつきとデバイス固有の異種性は、異常なIoTデバイスの振る舞いを確実に検出し、良質な振る舞いと区別することが非常に困難である。
既存の攻撃検出のアプローチは、主に個々のIoTデバイスを直接競合する攻撃に限られている。
iotシステムのコントロールプレーンを利用して、スマートホーム住民がいない間にスマートロックを開く、など、意図しない/危険なコンテキストでアクションをトリガーする攻撃は検出できない。
本稿では,この問題に対処し,攻撃者がIoTデバイスアクションを悪意を持って実行して目標を達成する,IoT環境に対するコンテキスト攻撃を検出する最初の自己学習侵入検知システムARGUSを提案する。
ARGUSは、環境中のIoTデバイスの状態と動作に基づいてコンテキスト設定を監視する。
教師なしディープニューラルネットワーク(DNN)は、典型的なコンテキストデバイス動作をモデル化し、異常なコンテキスト設定で実行されるアクションを検出するために使用される。
この教師なしのアプローチにより、ARGUSは既知の攻撃を検出するだけでなく、新たな攻撃を検出することができる。
我々は、異質な実世界のスマートホーム設定でARGUSを評価し、設定毎に少なくとも99.64%のF1スコアを達成し、偽陽性率(FPR)は0.03%である。
関連論文リスト
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - IoTWarden: A Deep Reinforcement Learning Based Real-time Defense System to Mitigate Trigger-action IoT Attacks [3.1449061818799615]
我々は、インジェクション攻撃のための強化学習に基づくリアルタイム防衛システムを構築した。
実験の結果,提案機構は適切なオーバーヘッドで効果的かつ正確に注射攻撃を識別・防御できることが示唆された。
論文 参考訳(メタデータ) (2024-01-16T06:25:56Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - An Intelligent Mechanism for Monitoring and Detecting Intrusions in IoT
Devices [0.7219077740523682]
この研究は、フェデレートラーニングとマルチ層パーセプトロンニューラルネットワークを活用して、IoTデバイスに対するサイバー攻撃を高精度に検出し、データプライバシ保護を強化するホストベースの侵入検知システムを提案する。
論文 参考訳(メタデータ) (2023-06-23T11:26:00Z) - Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity [1.294952045574009]
異常に基づく検出手法は、新たな攻撃を見つける上で有望である。
偽陽性のアラームや説明が難しい、費用対効果の低い、といった現実的な課題があります。
本稿では、SDNを使用して、各IoTデバイスの期待する動作を強制し、監視する。
論文 参考訳(メタデータ) (2023-04-11T05:17:51Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
論文 参考訳(メタデータ) (2022-07-16T11:12:32Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - IoU Attack: Towards Temporally Coherent Black-Box Adversarial Attack for
Visual Object Tracking [70.14487738649373]
アドリア攻撃は、深いニューラルネットワークが、知覚不能な摂動によって注入された入力サンプルを知覚する脆弱性によって起こる。
視覚的物体追跡のための決定に基づくブラックボックス攻撃法を提案する。
我々は、最先端のディープトラッカーに対するIoU攻撃を検証した。
論文 参考訳(メタデータ) (2021-03-27T16:20:32Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
この論文は、IoTのネットワーク行動パターンをプロファイリングする技術を開発する上で、私たちの努力の成果である。
我々は、交通パターンの属性で訓練された、堅牢な機械学習ベースの推論エンジンを開発する。
99%以上の精度で28台のIoTデバイスのリアルタイム分類を実演する。
論文 参考訳(メタデータ) (2020-01-28T23:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。