論文の概要: Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity
- arxiv url: http://arxiv.org/abs/2304.04987v1
- Date: Tue, 11 Apr 2023 05:17:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 16:09:41.479388
- Title: Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity
- Title(参考訳): MUD活動の動的モニタリングによるIoTボリューム攻撃における異常なマイクロフローの検出
- Authors: Ayyoob Hamza and Hassan Habibi Gharakheili and Theophilus A. Benson
and Gustavo Batista and Vijay Sivaraman
- Abstract要約: 異常に基づく検出手法は、新たな攻撃を見つける上で有望である。
偽陽性のアラームや説明が難しい、費用対効果の低い、といった現実的な課題があります。
本稿では、SDNを使用して、各IoTデバイスの期待する動作を強制し、監視する。
- 参考スコア(独自算出の注目度): 1.294952045574009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: IoT networks are increasingly becoming target of sophisticated new
cyber-attacks. Anomaly-based detection methods are promising in finding new
attacks, but there are certain practical challenges like false-positive alarms,
hard to explain, and difficult to scale cost-effectively. The IETF recent
standard called Manufacturer Usage Description (MUD) seems promising to limit
the attack surface on IoT devices by formally specifying their intended network
behavior. In this paper, we use SDN to enforce and monitor the expected
behaviors of each IoT device, and train one-class classifier models to detect
volumetric attacks.
Our specific contributions are fourfold. (1) We develop a multi-level
inferencing model to dynamically detect anomalous patterns in network activity
of MUD-compliant traffic flows via SDN telemetry, followed by packet inspection
of anomalous flows. This provides enhanced fine-grained visibility into
distributed and direct attacks, allowing us to precisely isolate volumetric
attacks with microflow (5-tuple) resolution. (2) We collect traffic traces
(benign and a variety of volumetric attacks) from network behavior of IoT
devices in our lab, generate labeled datasets, and make them available to the
public. (3) We prototype a full working system (modules are released as
open-source), demonstrates its efficacy in detecting volumetric attacks on
several consumer IoT devices with high accuracy while maintaining low false
positives, and provides insights into cost and performance of our system. (4)
We demonstrate how our models scale in environments with a large number of
connected IoTs (with datasets collected from a network of IP cameras in our
university campus) by considering various training strategies (per device unit
versus per device type), and balancing the accuracy of prediction against the
cost of models in terms of size and training time.
- Abstract(参考訳): IoTネットワークはますます、高度なサイバー攻撃の標的になりつつある。
異常に基づく検出手法は、新しい攻撃を見つけるには有望だが、偽陽性のアラーム、説明が難しい、コスト効率のよいスケールが難しいといった実用的な課題がある。
IETFの最近の標準であるManufacturer Usage Description (MUD)は、意図したネットワーク動作を正式に指定することで、IoTデバイスの攻撃面を制限することを約束しているようだ。
本稿では,各iotデバイスの期待される動作の強制と監視にsdnを使用し,ボリュームアタックを検出するために1つのクラス分類モデルをトレーニングする。
私たちの貢献は4倍です。
1)MUD対応トラフィックフローのネットワーク活動における異常パターンをSDNテレメトリにより動的に検出するマルチレベル推論モデルを構築し,次いで異常フローのパケット検査を行う。
これにより、分散およびダイレクトアタックに対するきめ細かい可視性が向上し、マイクロフロー(5-タプル)の解像度でボリュームアタックを正確に分離することができます。
2) 研究室内のIoTデバイスのネットワーク動作からトラフィックトレース(良性および多種多様なボリューム攻撃)を収集し,ラベル付きデータセットを生成し,それらを一般公開する。
(3) フル動作システム(モジュールはオープンソースとしてリリースされている)のプロトタイプを試作し,低偽陽性を維持しながら高い精度で複数のコンシューマIoTデバイスに対するボリューム攻撃を検出することの有効性を示し,システムのコストと性能に関する洞察を提供する。
(4) 多数の接続型IoT(大学キャンパス内のIPカメラのネットワークから収集したデータセット)を用いた環境における我々のモデルは、様々なトレーニング戦略(デバイス単位とデバイスタイプ別)を考慮し、サイズとトレーニング時間の観点からモデルのコストに対する予測精度のバランスをとることで、どのようにスケールするかを示す。
関連論文リスト
- Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks [4.836070911511429]
本稿では,Long Short Term Memory(LSTM)ネットワークとLarge Language Models(LLM)を組み合わせた新しいネットワーク侵入予測フレームワークを提案する。
我々のフレームワークは、CICIoT2023 IoT攻撃データセットに基づいて評価され、予測能力の大幅な改善を示し、全体的な精度は98%である。
論文 参考訳(メタデータ) (2024-08-26T06:57:22Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
さまざまな分野にわたるIoT(Internet of Things)デバイスは、深刻なネットワークセキュリティ上の懸念をエスカレートしている。
サイバー攻撃分類のための従来の機械学習(ML)ベースの侵入検知システム(IDS)は、IoTデバイスからトラフィック分析のための集中サーバへのデータ送信を必要とし、深刻なプライバシー上の懸念を引き起こす。
我々はFedMADEという新しい動的アグリゲーション手法を紹介した。この手法はデバイスをトラフィックパターンによってクラスタリングし、その全体的なパフォーマンスに対する貢献に基づいてローカルモデルを集約する。
論文 参考訳(メタデータ) (2024-08-13T18:42:34Z) - Redefining DDoS Attack Detection Using A Dual-Space Prototypical Network-Based Approach [38.38311259444761]
我々は、DDoS攻撃を検出するための新しいディープラーニングベースの技術を導入する。
本稿では,一意な双対空間損失関数を利用する新しい双対空間原型ネットワークを提案する。
このアプローチは、潜在空間における表現学習の強みを生かしている。
論文 参考訳(メタデータ) (2024-06-04T03:22:52Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
論文 参考訳(メタデータ) (2022-07-16T11:12:32Z) - Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach [40.992167455141946]
本稿では,IIoTにおける時系列データ検出のための,新しい通信効率の高いデバイス上でのフェデレーション学習(FL)に基づく深層異常検出フレームワークを提案する。
まず、分散エッジデバイスが協調して異常検出モデルを訓練し、その一般化能力を向上させるためのFLフレームワークを導入する。
次に,アテンションメカニズムに基づく畳み込みニューラルネットワーク-Long Short Term Memory (AMCNN-LSTM) モデルを提案し,異常を正確に検出する。
第三に,提案したフレームワークを産業異常検出のタイムラインに適用するために,トップテキスト選択に基づく勾配圧縮機構を提案する。
論文 参考訳(メタデータ) (2020-07-19T16:47:26Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
モノのインターネット(IoT)デバイスには、攻撃者によって悪用される可能性のある多くの脆弱性がある傾向がある。
異常検出のような教師なしの技術は、これらのデバイスをプラグ・アンド・プロテクトで保護するために使用することができる。
Raspberry Pi48台からなる分散IoTシミュレーションプラットフォームを提案する。
論文 参考訳(メタデータ) (2020-06-18T14:50:08Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
この論文は、IoTのネットワーク行動パターンをプロファイリングする技術を開発する上で、私たちの努力の成果である。
我々は、交通パターンの属性で訓練された、堅牢な機械学習ベースの推論エンジンを開発する。
99%以上の精度で28台のIoTデバイスのリアルタイム分類を実演する。
論文 参考訳(メタデータ) (2020-01-28T23:13:12Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。