論文の概要: Deep Learning for Hybrid Beamforming with Finite Feedback in GSM Aided
mmWave MIMO Systems
- arxiv url: http://arxiv.org/abs/2302.07601v1
- Date: Wed, 15 Feb 2023 11:42:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 15:16:00.889251
- Title: Deep Learning for Hybrid Beamforming with Finite Feedback in GSM Aided
mmWave MIMO Systems
- Title(参考訳): GSM支援ミリ波MIMOシステムにおける有限フィードバックを用いたハイブリッドビームフォーミングの深層学習
- Authors: Zhilin Lu, Xudong Zhang, Rui Zeng and Jintao Wang
- Abstract要約: ハイブリッドビームフォーミングはミリ波多重出力(MIMO)システムにおいて重要な技術として広く認識されている。
ディープラーニングの助けを借りて、GSMハイブリッドビームフォーマは、教師なし学習をエンドツーエンドで設計する。
- 参考スコア(独自算出の注目度): 9.320559153486885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid beamforming is widely recognized as an important technique for
millimeter wave (mmWave) multiple input multiple output (MIMO) systems.
Generalized spatial modulation (GSM) is further introduced to improve the
spectrum efficiency. However, most of the existing works on beamforming assume
the perfect channel state information (CSI), which is unrealistic in practical
systems. In this paper, joint optimization of downlink pilot training, channel
estimation, CSI feedback, and hybrid beamforming is considered in GSM aided
frequency division duplexing (FDD) mmWave MIMO systems. With the help of deep
learning, the GSM hybrid beamformers are designed via unsupervised learning in
an end-to-end way. Experiments show that the proposed multi-resolution network
named GsmEFBNet can reach a better achievable rate with fewer feedback bits
compared with the conventional algorithm.
- Abstract(参考訳): ハイブリッドビームフォーミングはミリ波多重出力(MIMO)システムにおいて重要な技術として広く認識されている。
スペクトル効率を改善するため、一般化空間変調(GSM)も導入された。
しかし、ビームフォーミングに関する既存の研究の多くは、実用システムでは非現実的な完全チャネル状態情報(CSI)を前提としている。
本稿では,gsm assisted frequency division duplexing (fdd) mmwave mimoシステムにおいて,ダウンリンクパイロット訓練,チャネル推定,csiフィードバック,ハイブリッドビームフォーミングの合同最適化を検討する。
ディープラーニングの助けを借りて、GSMハイブリッドビームフォーマは、教師なし学習をエンドツーエンドで設計する。
実験の結果,GsmEFBNetというマルチレゾリューションネットワークは,従来のアルゴリズムよりも少ないフィードバックビットで達成可能な速度に到達できることがわかった。
関連論文リスト
- Deep Learning Assisted Multiuser MIMO Load Modulated Systems for
Enhanced Downlink mmWave Communications [68.96633803796003]
本稿では, マルチユーザ負荷変調アレイ (MU-LMA) に着目し, マイクロウェーブ (mmWave) マルチインプット・マルチアウトプット (MIMO) システムにおいて, マルチユーザ負荷変調アレイ (MU-LMA) の小型化とコスト削減を図っている。
ダウンリンクMU-LMAの既存のプリコーディングアルゴリズムは、自由度と複雑なシステム構成の低下に悩まされるサブアレイ構造化(SAS)送信機に依存している。
本稿では,FAS (Full-array Structured) 送信機を用いたMU-LMAシステムを提案し,それに応じて2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-08T08:54:56Z) - Towards Efficient Subarray Hybrid Beamforming: Attention Network-based
Practical Feedback in FDD Massive MU-MIMO Systems [9.320559153486885]
本稿では,チャネル推定とフィードバックのための協調最適化ネットワークを提案する。
実験の結果,提案するネットワークは,リソースに敏感なユーザ機器において10倍以上軽量であることがわかった。
論文 参考訳(メタデータ) (2023-02-05T15:12:07Z) - MIMO-DBnet: Multi-channel Input and Multiple Outputs DOA-aware
Beamforming Network for Speech Separation [55.533789120204055]
混合信号のみを用いた方向案内音声分離のためのエンドツーエンドビームフォーミングネットワークを提案する。
具体的には,複数チャネルの入力と複数出力アーキテクチャを設計し,各ソースの指向性に基づく埋め込みとビームフォーミング重みを推定する。
論文 参考訳(メタデータ) (2022-12-07T01:52:40Z) - Over-the-Air Split Machine Learning in Wireless MIMO Networks [56.27831295707334]
スプリット機械学習(ML)では、ニューラルネットワーク(NN)の異なるパーティションが異なる計算ノードによって実行される。
通信負担を軽減するため、OAC(Over-the-air calculation)は通信と同時に計算の全てまたは一部を効率的に実装することができる。
論文 参考訳(メタデータ) (2022-10-07T15:39:11Z) - Federated Dropout Learning for Hybrid Beamforming With Spatial Path
Index Modulation In Multi-User mmWave-MIMO Systems [19.10321102094638]
SPIM-MIMOシステムにおけるビームフォーマー設計のためのモデルベースおよびモデルフリーフレームワークを紹介します。
提案手法は,最新のSPIM-MIMO法やmmWave-MIMO法よりも高いスペクトル効率を示す。
論文 参考訳(メタデータ) (2021-02-15T10:49:26Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
大規模マルチインプット多重出力(MIMO)ネットワークにおいて最適なビームフォーマを見つけることはよく知られている問題である。
本稿では,この問題に対処するための新しい深層学習に基づく論文アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-08T12:48:06Z) - Unsupervised Deep Learning for Massive MIMO Hybrid Beamforming [1.290382979353427]
ハイブリッドビームフォーミングは、MIMO(Multiple-input multiple-output)システムの複雑さとコストを低減するための有望な技術である。
本稿では,ハイブリッドビームフォーミングを設計するためのRSSIに基づく非教師なし深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T18:10:36Z) - Acquisition of Channel State Information for mmWave Massive MIMO:
Traditional and Machine Learning-based Approaches [48.52099617055683]
チャネル状態情報(CSI)の取得精度はミリ波通信の性能に直接影響を与える。
本稿では,ミリ波マルチインプットマルチアウトプットシステムのビームトレーニングとチャネル推定を含む,CSIの買収の概要について述べる。
論文 参考訳(メタデータ) (2020-06-16T03:11:51Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z) - Learning Based Hybrid Beamforming Design for Full-Duplex Millimeter Wave
Systems [22.478350298755892]
我々は、FD mmWaveシステムのためのHBF設計のための2つの学習スキーム、すなわち、極端な学習マシンベースのHBFと畳み込みニューラルネットワークベースのHBFを提案する。
その結果、どちらの学習ベーススキームもより堅牢なHBF性能を実現し、少なくとも22.1%のスペクトル効率が得られることが示された。
論文 参考訳(メタデータ) (2020-04-16T15:48:57Z) - RSSI-Based Hybrid Beamforming Design with Deep Learning [4.037009782513272]
ハイブリッドビームフォーミングは、5Gミリ波通信の有望な技術である。
実践的なマルチインプットマルチアウトプットシステムでは実装が困難である。
適切な学習と関連する最適化を行うために,ディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T22:22:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。