論文の概要: Dictionary-based Phrase-level Prompting of Large Language Models for
Machine Translation
- arxiv url: http://arxiv.org/abs/2302.07856v1
- Date: Wed, 15 Feb 2023 18:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 14:02:21.450823
- Title: Dictionary-based Phrase-level Prompting of Large Language Models for
Machine Translation
- Title(参考訳): 辞書に基づく機械翻訳のための大規模言語モデルのフレーズレベルプロンプト
- Authors: Marjan Ghazvininejad, Hila Gonen, Luke Zettlemoyer
- Abstract要約: 大規模言語モデル(LLM)は、プロンプトによる機械翻訳(MT)能力を示す。
LLMは、低リソースやドメイン転送のシナリオで一般的なまれな単語で入力を翻訳するのに苦労する。
LLMプロンプトは、バイリンガル辞書からの事前知識を用いてプロンプトの制御ヒントを提供することにより、稀な単語に対する効果的な解決策を提供することができることを示す。
- 参考スコア(独自算出の注目度): 91.57514888410205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) demonstrate remarkable machine translation (MT)
abilities via prompting, even though they were not explicitly trained for this
task. However, even given the incredible quantities of data they are trained
on, LLMs can struggle to translate inputs with rare words, which are common in
low resource or domain transfer scenarios. We show that LLM prompting can
provide an effective solution for rare words as well, by using prior knowledge
from bilingual dictionaries to provide control hints in the prompts. We propose
a novel method, DiPMT, that provides a set of possible translations for a
subset of the input words, thereby enabling fine-grained phrase-level prompted
control of the LLM. Extensive experiments show that DiPMT outperforms the
baseline both in low-resource MT, as well as for out-of-domain MT. We further
provide a qualitative analysis of the benefits and limitations of this
approach, including the overall level of controllability that is achieved.
- Abstract(参考訳): 大規模言語モデル(LLM)は、このタスクのために明示的に訓練されていないにもかかわらず、プロンプトによって機械翻訳(MT)能力を示す。
しかし、トレーニングされている膨大なデータを考えると、LLMは低リソースやドメイン転送のシナリオで一般的なまれな単語で入力を翻訳するのに苦労する可能性がある。
LLMプロンプトは、バイリンガル辞書からの事前知識を用いてプロンプトの制御ヒントを提供することにより、稀な単語に対する効果的な解決策を提供することができることを示す。
本稿では,入力単語のサブセットに対して可能な翻訳のセットを提供する新しい手法であるdimmtを提案する。
広範な実験により、dimtは低リソースmtとドメイン外mtの両方でベースラインよりも優れており、我々はさらに、このアプローチの利点と限界を定性的に分析し、達成される制御可能性の全体レベルを含めた。
関連論文リスト
- What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Learning-From-Mistakes Prompting for Indigenous Language Translation [3.7790255156708397]
本稿では,低リソースの母国語翻訳を改善する手法を提案する。
我々のアプローチは、限られた数の並列翻訳例からなるデータストアの使用に基礎を置いています。
我々は、LLMをユニバーサルトランスレータとして使用するような設定において、LLMと文脈内学習技術のポテンシャルを利用する。
論文 参考訳(メタデータ) (2024-07-18T09:41:20Z) - Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages [2.53740603524637]
機械翻訳モデル(MT)は優れた多言語表現を生成し、低リソース言語でも強力な翻訳性能が得られる。
本研究は,MTエンコーダをサンプル効率のよい自己蒸留法により,言語バックボーンに直接組み込むことにより,両世界のベストを得られる。
MT-LLMは、MTエンコーダから固有の多言語表現アライメントを保持しており、低リソース言語は英語中心のLLMに埋め込まれた豊富な知識を取り入れることができる。
論文 参考訳(メタデータ) (2024-06-18T16:00:20Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Fine-tuning Large Language Models for Domain-specific Machine
Translation [8.439661191792897]
大規模言語モデル(LLM)は機械翻訳(MT)において大きな進歩を遂げた。
しかし、ドメイン特異的MTのポテンシャルはいまだ未解明のままである。
本稿では,LlamaIT と呼ばれる,ドメイン固有の MT タスクのための汎用 LLM を効果的かつ効率的に微調整する,プロンプト指向の微調整手法を提案する。
論文 参考訳(メタデータ) (2024-02-23T02:24:15Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
我々は「あいまいな文」を翻訳する大規模言語モデルの能力について研究する。
実験の結果,提案手法はDeepLやNLLBといった最先端システムと5つの言語方向のうち4つで一致し,性能を向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-20T22:22:52Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
大規模言語モデル(LLM)は多言語ニューラルマシン翻訳(MNMT)において驚くほど優れた性能を示した
入力単語のサブセットに対する多言語辞書の連鎖による事前知識でLLMを拡張して翻訳能力を引き出す新しい方法であるCoDを提案する。
論文 参考訳(メタデータ) (2023-05-11T05:19:47Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。