Enhancing Deep Knowledge Tracing with Auxiliary Tasks
- URL: http://arxiv.org/abs/2302.07942v1
- Date: Tue, 14 Feb 2023 08:21:37 GMT
- Title: Enhancing Deep Knowledge Tracing with Auxiliary Tasks
- Authors: Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, Boyu Gao, Weiqi
Luo, Jian Weng
- Abstract summary: We propose emphAT-DKT to improve the prediction performance of the original deep knowledge tracing model.
We conduct comprehensive experiments on three real-world educational datasets and compare the proposed approach to both deep sequential KT models and non-sequential models.
- Score: 24.780533765606922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge tracing (KT) is the problem of predicting students' future
performance based on their historical interactions with intelligent tutoring
systems. Recent studies have applied multiple types of deep neural networks to
solve the KT problem. However, there are two important factors in real-world
educational data that are not well represented. First, most existing works
augment input representations with the co-occurrence matrix of questions and
knowledge components\footnote{\label{ft:kc}A KC is a generalization of everyday
terms like concept, principle, fact, or skill.} (KCs) but fail to explicitly
integrate such intrinsic relations into the final response prediction task.
Second, the individualized historical performance of students has not been well
captured. In this paper, we proposed \emph{AT-DKT} to improve the prediction
performance of the original deep knowledge tracing model with two auxiliary
learning tasks, i.e., \emph{question tagging (QT) prediction task} and
\emph{individualized prior knowledge (IK) prediction task}. Specifically, the
QT task helps learn better question representations by predicting whether
questions contain specific KCs. The IK task captures students' global
historical performance by progressively predicting student-level prior
knowledge that is hidden in students' historical learning interactions. We
conduct comprehensive experiments on three real-world educational datasets and
compare the proposed approach to both deep sequential KT models and
non-sequential models. Experimental results show that \emph{AT-DKT} outperforms
all sequential models with more than 0.9\% improvements of AUC for all
datasets, and is almost the second best compared to non-sequential models.
Furthermore, we conduct both ablation studies and quantitative analysis to show
the effectiveness of auxiliary tasks and the superior prediction outcomes of
\emph{AT-DKT}.
Related papers
- A Question-centric Multi-experts Contrastive Learning Framework for Improving the Accuracy and Interpretability of Deep Sequential Knowledge Tracing Models [26.294808618068146]
Knowledge tracing plays a crucial role in predicting students' future performance.
Deep neural networks (DNNs) have shown great potential in solving the KT problem.
However, there still exist some important challenges when applying deep learning techniques to model the KT process.
arXiv Detail & Related papers (2024-03-12T05:15:42Z) - Unified Pretraining for Recommendation via Task Hypergraphs [55.98773629788986]
We propose a novel multitask pretraining framework named Unified Pretraining for Recommendation via Task Hypergraphs.
For a unified learning pattern to handle diverse requirements and nuances of various pretext tasks, we design task hypergraphs to generalize pretext tasks to hyperedge prediction.
A novel transitional attention layer is devised to discriminatively learn the relevance between each pretext task and recommendation.
arXiv Detail & Related papers (2023-10-20T05:33:21Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - Improving Interpretability of Deep Sequential Knowledge Tracing Models
with Question-centric Cognitive Representations [22.055683237994696]
We present QIKT, a question-centric interpretable KT model to address the above challenges.
The proposed QIKT approach explicitly models students' knowledge state variations at a fine-grained level.
It outperforms a wide range of deep learning based KT models in terms of prediction accuracy with better model interpretability.
arXiv Detail & Related papers (2023-02-14T08:14:30Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - Deep Knowledge Tracing with Learning Curves [0.9088303226909278]
We propose a Convolution-Augmented Knowledge Tracing (CAKT) model in this paper.
The model employs three-dimensional convolutional neural networks to explicitly learn a student's recent experience on applying the same knowledge concept with that in the next question.
CAKT achieves the new state-of-the-art performance in predicting students' responses compared with existing models.
arXiv Detail & Related papers (2020-07-26T15:24:51Z) - qDKT: Question-centric Deep Knowledge Tracing [29.431121650577396]
We introduce qDKT, a variant of DKT that models every learner's success probability on individual questions over time.
qDKT incorporates graph Laplacian regularization to smooth predictions under each skill.
Experiments on several real-world datasets show that qDKT achieves state-of-art performance on predicting learner outcomes.
arXiv Detail & Related papers (2020-05-25T23:43:55Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.