論文の概要: Fuzzy Knowledge Distillation from High-Order TSK to Low-Order TSK
- arxiv url: http://arxiv.org/abs/2302.08038v1
- Date: Thu, 16 Feb 2023 02:27:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 15:20:50.166725
- Title: Fuzzy Knowledge Distillation from High-Order TSK to Low-Order TSK
- Title(参考訳): 高次tskから低次tskへのファジィ知識蒸留
- Authors: Xiongtao Zhang, Zezong Yin, Yunliang Jiang, Yizhang Jiang, Danfeng Sun
and Yong Liu
- Abstract要約: 高階高木スゲノカン(TSK)ファジィ分類器は強力な分類を持つが、ファジィ規則は少ない。
低次TSKファジィ分類器は高い解釈性で高速に動作する。
本研究では,HTSK-LLM-DKDという深層学習に知識蒸留を組み込んだHTSK-LLM-DKDを提案する。
- 参考スコア(独自算出の注目度): 12.41956187867738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-order Takagi-Sugeno-Kang (TSK) fuzzy classifiers possess powerful
classification performance yet have fewer fuzzy rules, but always be impaired
by its exponential growth training time and poorer interpretability owing to
High-order polynomial used in consequent part of fuzzy rule, while Low-order
TSK fuzzy classifiers run quickly with high interpretability, however they
usually require more fuzzy rules and perform relatively not very well. Address
this issue, a novel TSK fuzzy classifier embeded with knowledge distillation in
deep learning called HTSK-LLM-DKD is proposed in this study. HTSK-LLM-DKD
achieves the following distinctive characteristics: 1) It takes High-order TSK
classifier as teacher model and Low-order TSK fuzzy classifier as student
model, and leverages the proposed LLM-DKD (Least Learning Machine based
Decoupling Knowledge Distillation) to distill the fuzzy dark knowledge from
High-order TSK fuzzy classifier to Low-order TSK fuzzy classifier, which
resulting in Low-order TSK fuzzy classifier endowed with enhanced performance
surpassing or at least comparable to High-order TSK classifier, as well as high
interpretability; specifically 2) The Negative Euclidean distance between the
output of teacher model and each class is employed to obtain the teacher
logits, and then it compute teacher/student soft labels by the softmax function
with distillating temperature parameter; 3) By reformulating the
Kullback-Leibler divergence, it decouples fuzzy dark knowledge into target
class knowledge and non-target class knowledge, and transfers them to student
model. The advantages of HTSK-LLM-DKD are verified on the benchmarking UCI
datasets and a real dataset Cleveland heart disease, in terms of classification
performance and model interpretability.
- Abstract(参考訳): 高階高次スゲノカン(tsk)ファジィ分類器は強力な分類性能を持つが、ファジィルールは少ないが、ファジィルールの連続部分で使用される高階多項式の指数的成長訓練時間と低次tskファジィ分類器は高速で高い解釈性を持つが、通常はよりファジィルールを必要とし、比較的うまく動作しない。
本研究では,HTSK-LLM-DKDと呼ばれる知識蒸留を組み込んだ新しいTSKファジィ分類器を提案する。
HTSK-LLM-DKDは以下の特徴を持つ。
1) It takes High-order TSK classifier as teacher model and Low-order TSK fuzzy classifier as student model, and leverages the proposed LLM-DKD (Least Learning Machine based Decoupling Knowledge Distillation) to distill the fuzzy dark knowledge from High-order TSK fuzzy classifier to Low-order TSK fuzzy classifier, which resulting in Low-order TSK fuzzy classifier endowed with enhanced performance surpassing or at least comparable to High-order TSK classifier, as well as high interpretability; specifically
2) 教師モデルの出力と各クラスとの負のユークリッド距離を用いて教師ログを取得し、その後、蒸留温度パラメータを用いてソフトマックス関数により教師/学生のソフトラベルを算出する。
3)Kullback-Leiblerの分岐を再構成することにより,ファジィダークな知識をターゲットクラス知識と非ターゲットクラス知識に分離し,学生モデルに伝達する。
HTSK-LLM-DKDの利点は、分類性能とモデル解釈可能性の観点から、UCIデータセットと実際のデータセットであるクリーブランド心臓病において検証される。
関連論文リスト
- Just Leaf It: Accelerating Diffusion Classifiers with Hierarchical Class Pruning [8.209660505275872]
本稿では、データセット固有の階層的ラベル構造を利用する階層的拡散(HDC)を提案する。
HDCは、維持しながら最大60%の推論を加速し、場合によっては分類精度を向上させる。
我々の研究により、速度と精度のトレードオフの新しい制御機構が実現され、現実世界のアプリケーションでは拡散に基づく分類がより有効になる。
論文 参考訳(メタデータ) (2024-11-18T21:34:05Z) - SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
本稿では,Seq FTのレンズからの進行オーバーフィッティング問題を詳細に解析する。
過度に高速な表現学習と偏りのある分類層がこの問題を構成することを考慮し、先進的なSlow Learner with Alignment(S++)フレームワークを導入する。
提案手法は,バックボーンパラメータの学習率を選択的に減少させるスローラーナーと,ポストホック方式で不規則な分類層を整列させるアライメントを含む。
論文 参考訳(メタデータ) (2024-08-15T17:50:07Z) - Multi-Granularity Semantic Revision for Large Language Model Distillation [66.03746866578274]
LLM蒸留における多粒性セマンティックリビジョン法を提案する。
シーケンスレベルでは、シーケンス修正と再生戦略を提案する。
トークンレベルでは、蒸留目的関数として、Kulback-Leibler損失を補正する分布適応クリッピングを設計する。
スパンレベルでは、シーケンスのスパン前処理を利用して、スパン内の確率相関を計算し、教師と学生の確率相関を一貫性に制約する。
論文 参考訳(メタデータ) (2024-07-14T03:51:49Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
クラス増分学習は,限定された新規クラスサンプルを用いて,新規クラスを継続的に認識することを目的としている。
最近の手法では,段階的なセッションで特徴抽出器を微調整することにより,ベースクラスとインクリメンタルクラスの精度の不均衡を緩和している。
本研究では,FSCIL問題におけるモデルバイアスを緩和する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T10:37:41Z) - ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
分類学的オープンセット(TOS)設定では、ほとんどショット適応法はうまくいきません。
本稿では,モデル予測の階層的一貫性を校正する即時チューニング手法を提案する。
次に,階層整合性のための新しいPrompt Tuning(ProTeCt)手法を提案し,ラベル集合の粒度を分類する。
論文 参考訳(メタデータ) (2023-06-04T02:55:25Z) - Improving Knowledge Distillation via Regularizing Feature Norm and
Direction [16.98806338782858]
知識蒸留(KD)は、大きな訓練されたモデル(例えば教師)を利用して、同じタスクのために同じデータセット上で小さな学生モデルを訓練する。
教師の特徴を知識として扱うこと、知識蒸留訓練の学生は、その特徴を教師の特徴と整合させることによって、例えば、ロジット間のKL偏差を最小化し、中間特徴間のL2距離を最小化する。
教師に対する生徒の特徴の整合性の向上は教師の知識をよりよく蒸留すると考えるのは自然なことだが、単にこの整合性を強制することは生徒のパフォーマンスに直接寄与しない。
論文 参考訳(メタデータ) (2023-05-26T15:05:19Z) - Online Hyperparameter Optimization for Class-Incremental Learning [99.70569355681174]
クラス増分学習(Class-incremental Learning, CIL)は、クラス数がフェーズごとに増加する一方で、分類モデルを訓練することを目的としている。
CILの固有の課題は、安定性と塑性のトレードオフである。すなわち、CILモデルは古い知識を保ち、新しい知識を吸収するためにプラスチックを保たなければならない。
本稿では,事前設定を知らずにトレードオフを適応的に最適化するオンライン学習手法を提案する。
論文 参考訳(メタデータ) (2023-01-11T17:58:51Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Comparison of machine learning and deep learning techniques in promoter
prediction across diverse species [1.8899300124593648]
3つの高等真核生物のゲノム配列を用いたベクターエンコーディング法とプロモーター分類法を検討した。
酵母、A. タリアナおよび人間。
cnnは非プロモーター配列からのプロモーターの分類(バイナリ分類)やプロモーター配列の種別分類(マルチクラス分類)において優れていることがわかった。
論文 参考訳(メタデータ) (2021-05-17T08:15:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。