論文の概要: Just Leaf It: Accelerating Diffusion Classifiers with Hierarchical Class Pruning
- arxiv url: http://arxiv.org/abs/2411.12073v1
- Date: Mon, 18 Nov 2024 21:34:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:38:25.528161
- Title: Just Leaf It: Accelerating Diffusion Classifiers with Hierarchical Class Pruning
- Title(参考訳): 直視:階層型クラスプルーニングによる拡散分類器の高速化
- Authors: Arundhati S. Shanbhag, Brian B. Moser, Tobias C. Nauen, Stanislav Frolov, Federico Raue, Andreas Dengel,
- Abstract要約: 本稿では、データセット固有の階層的ラベル構造を利用する階層的拡散(HDC)を提案する。
HDCは、維持しながら最大60%の推論を加速し、場合によっては分類精度を向上させる。
我々の研究により、速度と精度のトレードオフの新しい制御機構が実現され、現実世界のアプリケーションでは拡散に基づく分類がより有効になる。
- 参考スコア(独自算出の注目度): 8.209660505275872
- License:
- Abstract: Diffusion models, known for their generative capabilities, have recently shown unexpected potential in image classification tasks by using Bayes' theorem. However, most diffusion classifiers require evaluating all class labels for a single classification, leading to significant computational costs that can hinder their application in large-scale scenarios. To address this, we present a Hierarchical Diffusion Classifier (HDC) that exploits the inherent hierarchical label structure of a dataset. By progressively pruning irrelevant high-level categories and refining predictions only within relevant subcategories, i.e., leaf nodes, HDC reduces the total number of class evaluations. As a result, HDC can accelerate inference by up to 60% while maintaining and, in some cases, improving classification accuracy. Our work enables a new control mechanism of the trade-off between speed and precision, making diffusion-based classification more viable for real-world applications, particularly in large-scale image classification tasks.
- Abstract(参考訳): 拡散モデルは、その生成能力で知られており、最近ベイズの定理を用いて画像分類タスクにおいて予期せぬ可能性を示している。
しかしながら、ほとんどの拡散分類器は、単一の分類のための全てのクラスラベルを評価する必要があり、大規模なシナリオでのアプリケーションの障害となる計算コストが大幅に増大する。
これを解決するために、データセット固有の階層的ラベル構造を利用する階層的拡散分類器(HDC)を提案する。
無関係な高レベルのカテゴリを徐々に刈り上げ、関連するサブカテゴリ、すなわち葉ノード内でのみ精製予測を行うことで、HDCはクラス評価の総数を削減する。
その結果、HDCは最大60%まで推論を加速し、場合によっては分類精度を向上させることができる。
我々の研究は、スピードと精度のトレードオフの新たな制御機構を可能にし、特に大規模画像分類タスクにおいて、拡散に基づく分類をより現実のアプリケーションに利用できるようにする。
関連論文リスト
- ProTeCt: Prompt Tuning for Taxonomic Open Set Classification [59.59442518849203]
分類学的オープンセット(TOS)設定では、ほとんどショット適応法はうまくいきません。
本稿では,モデル予測の階層的一貫性を校正する即時チューニング手法を提案する。
次に,階層整合性のための新しいPrompt Tuning(ProTeCt)手法を提案し,ラベル集合の粒度を分類する。
論文 参考訳(メタデータ) (2023-06-04T02:55:25Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) は、部分的にラベル付けされたデータを自動でクラスタリングすることを目的としている。
ラベル付きデータには、ラベル付きデータの既知のカテゴリだけでなく、新しいカテゴリのインスタンスも含まれている。
GCDの効果的な方法の1つは、ラベルなしデータの識別表現を学習するために自己教師付き学習を適用することである。
本稿では,クラスタリングの精度を効果的に向上する動的概念コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T14:04:39Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Hierarchical classification at multiple operating points [1.520694326234112]
階層内の各クラスにスコアを割り当てる任意のメソッドに対して,演算特性曲線を生成する効率的なアルゴリズムを提案する。
2つの新しい損失関数を提案し、構造的ヒンジ損失のソフトな変形が平坦なベースラインを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-10-19T23:36:16Z) - Exploring Category-correlated Feature for Few-shot Image Classification [27.13708881431794]
本稿では,従来の知識として,新しいクラスとベースクラスのカテゴリ相関を探索し,シンプルで効果的な特徴補正手法を提案する。
提案手法は, 広く使用されている3つのベンチマークにおいて, 一定の性能向上が得られる。
論文 参考訳(メタデータ) (2021-12-14T08:25:24Z) - Inducing a hierarchy for multi-class classification problems [11.58041597483471]
分類的ラベルが自然な階層に従ったアプリケーションでは、ラベル構造を利用する分類方法は、そうでないものをしばしば上回る。
本稿では,フラット分類器に対する分類性能を向上できる階層構造を誘導する手法のクラスについて検討する。
原理シミュレーションと3つの実データアプリケーションにおいて、潜入階層の発見と精度向上のためのメソッドのクラスの有効性を実証する。
論文 参考訳(メタデータ) (2021-02-20T05:40:42Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
そこで本研究では,より大規模で未観測のクラスに対して,期待する精度を推定するために,分類器の性能をどのように利用することができるかを検討する。
ニューラルネットワークに基づく頑健なアルゴリズム "CleaneX" を定式化し,任意のサイズのクラスに対して,そのような分類器の精度を推定する。
論文 参考訳(メタデータ) (2020-10-28T14:37:25Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
ロングテール認識は、現実世界のシナリオにおける自然な非一様分散データに取り組む。
モダンは人口密度の高いクラスではうまく機能するが、そのパフォーマンスはテールクラスでは著しく低下する。
Deep-RTCは、リアリズムと階層的予測を組み合わせたロングテール問題の新しい解法として提案されている。
論文 参考訳(メタデータ) (2020-07-20T05:57:42Z) - Conditional Classification: A Solution for Computational Energy
Reduction [2.182419181054266]
本稿では,畳み込みニューラルネットワークモデルの計算複雑性を低減する新しい手法を提案する。
提案手法は,1)入力サンプルを一連の超クラスに分類する粗粒分類,2)最終ラベルを第1ステップで検出した超クラス間で予測する細粒分類の2段階に分類する。
論文 参考訳(メタデータ) (2020-06-29T03:50:39Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
本稿では,エンド・ツー・エンドの設定において,分類ネットワークと融合可能な効率的なローカライゼーションモジュールを提案する。
我々は,CUB200-2011,Stanford Cars,FGVC-Aircraftの3つのベンチマークデータセット上で,新しいモデルを評価する。
論文 参考訳(メタデータ) (2020-05-11T14:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。