論文の概要: Masking and Mixing Adversarial Training
- arxiv url: http://arxiv.org/abs/2302.08066v1
- Date: Thu, 16 Feb 2023 04:05:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 15:01:12.190887
- Title: Masking and Mixing Adversarial Training
- Title(参考訳): マスキングと混合相手訓練
- Authors: Hiroki Adachi, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu
Fujiyoshi, Yasunori Ishii, Kazuki Kozuka
- Abstract要約: 敵の訓練は、敵の例の脅威から守るために人気があり、簡単なテクニックである。
CNNは、敵の例に対する堅牢性を改善するために、標準サンプルの精度を犠牲にしなければならない。
本稿では,M2AT(Masking and Mixing Adversarial Training)を提案する。
- 参考スコア(独自算出の注目度): 9.690454593095495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While convolutional neural networks (CNNs) have achieved excellent
performances in various computer vision tasks, they often misclassify with
malicious samples, a.k.a. adversarial examples. Adversarial training is a
popular and straightforward technique to defend against the threat of
adversarial examples. Unfortunately, CNNs must sacrifice the accuracy of
standard samples to improve robustness against adversarial examples when
adversarial training is used. In this work, we propose Masking and Mixing
Adversarial Training (M2AT) to mitigate the trade-off between accuracy and
robustness. We focus on creating diverse adversarial examples during training.
Specifically, our approach consists of two processes: 1) masking a perturbation
with a binary mask and 2) mixing two partially perturbed images. Experimental
results on CIFAR-10 dataset demonstrate that our method achieves better
robustness against several adversarial attacks than previous methods.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は様々なコンピュータビジョンタスクにおいて優れたパフォーマンスを達成しているが、悪質なサンプル、すなわち敵の例では誤分類されることが多い。
敵の訓練は、敵の例の脅威から守るために人気があり簡単なテクニックである。
残念ながら、cnnは、敵のトレーニングを使用する場合の敵の例に対するロバスト性を改善するために標準サンプルの精度を犠牲にしなければならない。
本研究では,M2AT(Masking and Mixing Adversarial Training, Masking and Mixing Adversarial Training)を提案する。
トレーニング中にさまざまな敵の例を作ることに重点を置いています。
具体的には、我々のアプローチは2つのプロセスから構成される。
1)二分マスクで摂動をマスキングする
2) 2つの部分摂動画像の混合。
cifar-10データセットにおける実験結果から,本手法は従来の手法よりも複数の攻撃に対してより頑健性が得られた。
関連論文リスト
- Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders [101.42201747763178]
未学習例(UE)は、正しくラベル付けされたトレーニング例に微妙な修正を加えることで、テストエラーの最大化を目指している。
我々の研究は、効率的な事前学習浄化法を構築するための、新しいゆがみ機構を提供する。
論文 参考訳(メタデータ) (2024-05-02T16:49:25Z) - CAT:Collaborative Adversarial Training [80.55910008355505]
ニューラルネットワークの堅牢性を改善するために,協調的対人訓練フレームワークを提案する。
具体的には、異なる対戦型トレーニング手法を使用して、堅牢なモデルをトレーニングし、トレーニングプロセス中にモデルが自身の知識と対話できるようにします。
Cat は Auto-Attack ベンチマークの下で CIFAR-10 上の追加データを用いることなく、最先端の敵の堅牢性を達成している。
論文 参考訳(メタデータ) (2023-03-27T05:37:43Z) - Improved Adversarial Training Through Adaptive Instance-wise Loss
Smoothing [5.1024659285813785]
敵の訓練は、このような敵の攻撃に対する最も成功した防御であった。
本稿では,新たな対人訓練手法を提案する。
本手法は,$ell_infty$-norm制約攻撃に対する最先端のロバスト性を実現する。
論文 参考訳(メタデータ) (2023-03-24T15:41:40Z) - Do we need entire training data for adversarial training? [2.995087247817663]
我々は, 対人訓練のためのトレーニングデータのサブセットのみを用いることで, 任意の対人訓練アルゴリズムのトレーニング時間を短縮できることを示す。
逆行性サブセットで逆行訓練を行い、データセット全体のバニラトレーニングと組み合わせる。
その結果,本手法をFGSMにプラグインした場合,MNISTでは3.52倍,CIFAR-10データセットでは1.98倍の高速化を実現することができた。
論文 参考訳(メタデータ) (2023-03-10T23:21:05Z) - Adversarial Pretraining of Self-Supervised Deep Networks: Past, Present
and Future [132.34745793391303]
本稿では,畳み込みニューラルネットワークと視覚変換器の両方を含む自己教師型深層ネットワークの対角的事前学習について検討する。
対戦相手を入力レベルと特徴レベルのいずれかの事前学習モデルに組み込むには、既存のアプローチは2つのグループに大別される。
論文 参考訳(メタデータ) (2022-10-23T13:14:06Z) - Semantics-Preserving Adversarial Training [12.242659601882147]
逆行訓練は、訓練データに逆行例を含めることで、ディープニューラルネットワーク(DNN)の逆行性を改善する技術である。
本研究では,すべてのクラスで共有される画素の摂動を促すセマンティックス保存逆行訓練(SPAT)を提案する。
実験の結果,SPATは対向ロバスト性を向上し,CIFAR-10およびCIFAR-100の最先端結果を達成することがわかった。
論文 参考訳(メタデータ) (2020-09-23T07:42:14Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z) - Class-Aware Domain Adaptation for Improving Adversarial Robustness [27.24720754239852]
学習データに敵の例を注入することにより,ネットワークを訓練するための敵の訓練が提案されている。
そこで本研究では,対人防御のための新しいクラスアウェアドメイン適応法を提案する。
論文 参考訳(メタデータ) (2020-05-10T03:45:19Z) - Single-step Adversarial training with Dropout Scheduling [59.50324605982158]
単段階逆行訓練法を用いて学習したモデルは、単段階逆行の発生を防止するために学習する。
提案手法を用いて訓練されたモデルは, 単段階攻撃と多段階攻撃の両方に対して堅牢である。
論文 参考訳(メタデータ) (2020-04-18T14:14:00Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
我々は、高ビット平面の情報に基づいて粗い印象を形成するためにネットワークを訓練し、低ビット平面を用いて予測を洗練させる。
異なる量子化画像間で学習した表現に一貫性を付与することにより、ネットワークの対角的ロバスト性が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-04-01T09:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。