Research on road object detection algorithm based on improved YOLOX
- URL: http://arxiv.org/abs/2302.08156v1
- Date: Thu, 16 Feb 2023 08:58:42 GMT
- Title: Research on road object detection algorithm based on improved YOLOX
- Authors: Tao Yang, Youyu Wu, Yangxintai Tang
- Abstract summary: In road object detection, the omission of small objects and occluded objects is an important problem.
This paper proposes DecIoU boundary box regression loss function to improve the shape consistency of the predicted and real box, and Push Loss is introduced to further optimize the boundary box regression loss function.
A large number of experiments on KITTI dataset demonstrate the effectiveness of the proposed method.
- Score: 3.5539647094032705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road object detection is an important branch of automatic driving technology,
The model with higher detection accuracy is more conducive to the safe driving
of vehicles. In road object detection, the omission of small objects and
occluded objects is an important problem. therefore, reducing the missed rate
of the object is of great significance for safe driving. In the work of this
paper, based on the YOLOX object detection algorithm to improve, proposes
DecIoU boundary box regression loss function to improve the shape consistency
of the predicted and real box, and Push Loss is introduced to further optimize
the boundary box regression loss function, in order to detect more occluded
objects. In addition, the dynamic anchor box mechanism is also used to improve
the accuracy of the confidence label, improve the label inaccuracy of object
detection model without anchor box. A large number of experiments on KITTI
dataset demonstrate the effectiveness of the proposed method, the improved
YOLOX-s achieved 88.9% mAP and 91.0% mAR on the KITTI dataset, compared to the
baseline version improvements of 2.77% and 4.24%; the improved YOLOX-m achieved
89.1% mAP and 91.4% mAR, compared to the baseline version improvements of 2.30%
and 4.10%.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - YOLO-ELA: Efficient Local Attention Modeling for High-Performance Real-Time Insulator Defect Detection [0.0]
Existing detection methods for insulator defect identification from unmanned aerial vehicles struggle with complex background scenes and small objects.
This paper proposes a new attention-based foundation architecture, YOLO-ELA, to address this issue.
Experimental results on high-resolution UAV images show that our method achieved a state-of-the-art performance of 96.9% mAP0.5 and a real-time detection speed of 74.63 frames per second.
arXiv Detail & Related papers (2024-10-15T16:00:01Z) - SOD-YOLOv8 -- Enhancing YOLOv8 for Small Object Detection in Traffic Scenes [1.3812010983144802]
Small Object Detection YOLOv8 (SOD-YOLOv8) is designed for scenarios involving numerous small objects.
SOD-YOLOv8 significantly improves small object detection, surpassing widely used models in various metrics.
In dynamic real-world traffic scenes, SOD-YOLOv8 demonstrated notable improvements in diverse conditions.
arXiv Detail & Related papers (2024-08-08T23:05:25Z) - KAN-RCBEVDepth: A multi-modal fusion algorithm in object detection for autonomous driving [2.382388777981433]
This paper introduces the KAN-RCBEVDepth method to enhance 3D object detection in autonomous driving.
Our unique Bird's Eye View-based approach significantly improves detection accuracy and efficiency.
The code will be released in urlhttps://www.laitiamo.com/laitiamo/RCBEVDepth-KAN.
arXiv Detail & Related papers (2024-08-04T16:54:49Z) - Research on target detection method of distracted driving behavior based on improved YOLOv8 [6.405098280736171]
This study proposes an improved YOLOv8 detection method based on the original YOLOv8 model by integrating the BoTNet module, GAM attention mechanism and EIoU loss function.
Experimental results show that the improved model performs well in both detection speed and accuracy, with an accuracy rate of 99.4%.
arXiv Detail & Related papers (2024-07-02T00:43:41Z) - YOLO9tr: A Lightweight Model for Pavement Damage Detection Utilizing a Generalized Efficient Layer Aggregation Network and Attention Mechanism [0.0]
This paper proposes YOLO9tr, a novel lightweight object detection model for pavement damage detection.
YOLO9tr is based on the YOLOv9 architecture, incorporating a partial attention block that enhances feature extraction and attention mechanisms.
The model achieves a high frame rate of up to 136 FPS, making it suitable for real-time applications such as video surveillance and automated inspection systems.
arXiv Detail & Related papers (2024-06-17T06:31:43Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Improving 3D Object Detection through Progressive Population Based
Augmentation [91.56261177665762]
We present the first attempt to automate the design of data augmentation policies for 3D object detection.
We introduce the Progressive Population Based Augmentation (PPBA) algorithm, which learns to optimize augmentation strategies by narrowing down the search space and adopting the best parameters discovered in previous iterations.
We find that PPBA may be up to 10x more data efficient than baseline 3D detection models without augmentation, highlighting that 3D detection models may achieve competitive accuracy with far fewer labeled examples.
arXiv Detail & Related papers (2020-04-02T05:57:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.