Research on target detection method of distracted driving behavior based on improved YOLOv8
- URL: http://arxiv.org/abs/2407.01864v2
- Date: Fri, 5 Jul 2024 17:17:48 GMT
- Title: Research on target detection method of distracted driving behavior based on improved YOLOv8
- Authors: Shiquan Shen, Zhizhong Wu, Pan Zhang,
- Abstract summary: This study proposes an improved YOLOv8 detection method based on the original YOLOv8 model by integrating the BoTNet module, GAM attention mechanism and EIoU loss function.
Experimental results show that the improved model performs well in both detection speed and accuracy, with an accuracy rate of 99.4%.
- Score: 6.405098280736171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of deep learning technology, the detection and classification of distracted driving behaviour requires higher accuracy. Existing deep learning-based methods are computationally intensive and parameter redundant, limiting the efficiency and accuracy in practical applications. To solve this problem, this study proposes an improved YOLOv8 detection method based on the original YOLOv8 model by integrating the BoTNet module, GAM attention mechanism and EIoU loss function. By optimising the feature extraction and multi-scale feature fusion strategies, the training and inference processes are simplified, and the detection accuracy and efficiency are significantly improved. Experimental results show that the improved model performs well in both detection speed and accuracy, with an accuracy rate of 99.4%, and the model is smaller and easy to deploy, which is able to identify and classify distracted driving behaviours in real time, provide timely warnings, and enhance driving safety.
Related papers
- P-YOLOv8: Efficient and Accurate Real-Time Detection of Distracted Driving [0.0]
Distracted driving is a critical safety issue that leads to numerous fatalities and injuries worldwide.
This study addresses the need for efficient and real-time machine learning models to detect distracted driving behaviors.
A real-time object detection system is introduced, optimized for both speed and accuracy.
arXiv Detail & Related papers (2024-10-21T02:56:44Z) - Cutting-Edge Detection of Fatigue in Drivers: A Comparative Study of Object Detection Models [0.0]
This research delves into the development of a fatigue detection system based on modern object detection algorithms, including YOLOv5, YOLOv6, YOLOv7, and YOLOv8.
By comparing the performance of these models, we evaluate their effectiveness in real-time detection of fatigue-related behavior in drivers.
The study addresses challenges like environmental variability and detection accuracy and suggests a roadmap for enhancing real-time detection.
arXiv Detail & Related papers (2024-10-19T08:06:43Z) - YOLO-ELA: Efficient Local Attention Modeling for High-Performance Real-Time Insulator Defect Detection [0.0]
Existing detection methods for insulator defect identification from unmanned aerial vehicles struggle with complex background scenes and small objects.
This paper proposes a new attention-based foundation architecture, YOLO-ELA, to address this issue.
Experimental results on high-resolution UAV images show that our method achieved a state-of-the-art performance of 96.9% mAP0.5 and a real-time detection speed of 74.63 frames per second.
arXiv Detail & Related papers (2024-10-15T16:00:01Z) - Innovative Deep Learning Techniques for Obstacle Recognition: A Comparative Study of Modern Detection Algorithms [0.0]
This study explores a comprehensive approach to obstacle detection using advanced YOLO models, specifically YOLOv8, YOLOv7, YOLOv6, and YOLOv5.
The findings demonstrate that YOLOv8 achieves the highest accuracy with improved precision-recall metrics.
arXiv Detail & Related papers (2024-10-14T02:28:03Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
We introduce a causality-aware entropy term that effectively identifies and prioritizes actions with high potential impacts for efficient exploration.
Our proposed algorithm, ACE: Off-policy Actor-critic with Causality-aware Entropy regularization, demonstrates a substantial performance advantage across 29 diverse continuous control tasks.
arXiv Detail & Related papers (2024-02-22T13:22:06Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Improved YOLOv5 network for real-time multi-scale traffic sign detection [4.5598087061051755]
We propose an improved feature pyramid model, named AF-FPN, which utilize the adaptive attention module (AAM) and feature enhancement module (FEM) to reduce the information loss in the process of feature map generation.
We replace the original feature pyramid network in YOLOv5 with AF-FPN, which improves the detection performance for multi-scale targets of the YOLOv5 network.
arXiv Detail & Related papers (2021-12-16T11:02:12Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
We propose a unified framework for active learning, that considers both the uncertainty and the robustness of the detector.
Our method is able to pseudo-label the very confident predictions, suppressing a potential distribution drift.
arXiv Detail & Related papers (2021-06-22T16:53:09Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.