Introduction to Presentation Attacks in Signature Biometrics and Recent
Advances
- URL: http://arxiv.org/abs/2302.08320v1
- Date: Thu, 16 Feb 2023 14:22:55 GMT
- Title: Introduction to Presentation Attacks in Signature Biometrics and Recent
Advances
- Authors: Carlos Gonzalez-Garcia, Ruben Tolosana, Ruben Vera-Rodriguez, Julian
Fierrez and Javier Ortega-Garcia
- Abstract summary: It is important not to forget that biometric systems have to withstand different types of possible attacks.
This chapter carries out an analysis of different Presentation Attack scenarios for on-line handwritten signature verification.
- Score: 5.984778372787988
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Applications based on biometric authentication have received a lot of
interest in the last years due to the breathtaking results obtained using
personal traits such as face or fingerprint. However, it is important not to
forget that these biometric systems have to withstand different types of
possible attacks. This chapter carries out an analysis of different
Presentation Attack (PA) scenarios for on-line handwritten signature
verification. The main contributions of this chapter are: i) an updated
overview of representative methods for Presentation Attack Detection (PAD) in
signature biometrics; ii) a description of the different levels of PAs existing
in on-line signature verification regarding the amount of information available
to the impostor, as well as the training, effort, and ability to perform the
forgeries; and iii) an evaluation of the system performance in signature
biometrics under different scenarios considering recent publicly available
signature databases, DeepSignDB and SVC2021_EvalDB. This work is in line with
recent efforts in the Common Criteria standardization community towards
security evaluation of biometric systems.
Related papers
- Secure access system using signature verification over tablet PC [62.21072852729544]
We describe a highly versatile and scalable prototype for Web-based secure access using signature verification.
The proposed architecture can be easily extended to work with different kinds of sensors and large-scale databases.
arXiv Detail & Related papers (2023-01-11T11:05:47Z) - Face Presentation Attack Detection [59.05779913403134]
Face recognition technology has been widely used in daily interactive applications such as checking-in and mobile payment.
However, its vulnerability to presentation attacks (PAs) limits its reliable use in ultra-secure applicational scenarios.
arXiv Detail & Related papers (2022-12-07T14:51:17Z) - Facial Soft Biometrics for Recognition in the Wild: Recent Works,
Annotation, and COTS Evaluation [63.05890836038913]
We study the role of soft biometrics to enhance person recognition systems in unconstrained scenarios.
We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems.
Experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning.
arXiv Detail & Related papers (2022-10-24T11:29:57Z) - On-line signature verification using Tablet PC [61.81926091202142]
The on-line signature verification algorithm is adapted to work in Tablet PC environments.
Two different commercial Tablet PCs are evaluated.
Authentication performance experiments are reported considering both random and skilled forgeries.
arXiv Detail & Related papers (2022-10-20T09:59:28Z) - Evaluation of a User Authentication Schema Using Behavioral Biometrics
and Machine Learning [0.0]
This study contributes to the research being done on behavioral biometrics by creating and evaluating a user authentication scheme using behavioral biometrics.
The behavioral biometrics used in this study include touch dynamics and phone movement.
We evaluate the performance of different single-modal and multi-modal combinations of the two biometrics.
arXiv Detail & Related papers (2022-05-07T05:16:34Z) - OTB-morph: One-Time Biometrics via Morphing applied to Face Templates [8.623680649444212]
This paper introduces a new scheme for cancelable biometrics aimed at protecting the templates against potential attacks.
An experimental implementation of the proposed scheme is given for face biometrics.
arXiv Detail & Related papers (2021-11-25T18:35:34Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
This paper reports a benchmarking study carried out within the framework of the BioSecure DS2 (Access Control) evaluation campaign.
The campaign targeted the application of physical access control in a medium-size establishment with some 500 persons.
To the best of our knowledge, this is the first attempt to benchmark quality-based multimodal fusion algorithms.
arXiv Detail & Related papers (2021-11-17T13:39:48Z) - Data-driven behavioural biometrics for continuous and adaptive user
verification using Smartphone and Smartwatch [0.0]
We propose an algorithm to blend behavioural biometrics with multi-factor authentication (MFA)
This work proposes a two-step user verification algorithm that verifies the user's identity using motion-based biometrics.
arXiv Detail & Related papers (2021-10-07T02:46:21Z) - Biometrics: Trust, but Verify [49.9641823975828]
Biometric recognition has exploded into a plethora of different applications around the globe.
There are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems.
arXiv Detail & Related papers (2021-05-14T03:07:25Z) - Signal-level Fusion for Indexing and Retrieval of Facial Biometric Data [17.297562114613505]
The proposed method is extensively evaluated on publicly available databases using open-source and commercial off-the-shelf recognition systems.
The results show that using the proposed method, the computational workload can be reduced down to around 30%.
arXiv Detail & Related papers (2021-03-05T14:06:54Z) - A Survey on Unknown Presentation Attack Detection for Fingerprint [4.424609902825527]
Biometrics researchers have developed Presentation Attack Detection (PAD) methods as a countermeasure to presentation attacks (PA)
PAD is usually done by training a machine learning classifier for known attacks for a given dataset, and they achieve high accuracy.
We present a comprehensive survey on existing PAD algorithms for fingerprint recognition systems, specifically from the standpoint of detecting unknown PAD.
arXiv Detail & Related papers (2020-05-17T18:46:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.