論文の概要: Temporal Graph Neural Networks for Irregular Data
- arxiv url: http://arxiv.org/abs/2302.08415v1
- Date: Thu, 16 Feb 2023 16:47:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 13:22:27.895468
- Title: Temporal Graph Neural Networks for Irregular Data
- Title(参考訳): 不規則データのための時間グラフニューラルネットワーク
- Authors: Joel Oskarsson, Per Sid\'en, Fredrik Lindsten
- Abstract要約: TGNN4Iモデルは、不規則な時間ステップとグラフの部分的な観察の両方を扱うように設計されている。
時間連続力学により、任意の時間ステップでモデルを予測できる。
交通・気候モデルによるシミュレーションデータと実世界のデータの実験は、グラフ構造と時間連続力学の両方の有用性を検証する。
- 参考スコア(独自算出の注目度): 14.653008985229615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a temporal graph neural network model for forecasting of
graph-structured irregularly observed time series. Our TGNN4I model is designed
to handle both irregular time steps and partial observations of the graph. This
is achieved by introducing a time-continuous latent state in each node,
following a linear Ordinary Differential Equation (ODE) defined by the output
of a Gated Recurrent Unit (GRU). The ODE has an explicit solution as a
combination of exponential decay and periodic dynamics. Observations in the
graph neighborhood are taken into account by integrating graph neural network
layers in both the GRU state update and predictive model. The time-continuous
dynamics additionally enable the model to make predictions at arbitrary time
steps. We propose a loss function that leverages this and allows for training
the model for forecasting over different time horizons. Experiments on
simulated data and real-world data from traffic and climate modeling validate
the usefulness of both the graph structure and time-continuous dynamics in
settings with irregular observations.
- Abstract(参考訳): 本稿では,グラフ構造不規則観測時系列予測のための時間グラフニューラルネットワークモデルを提案する。
我々のTGNN4Iモデルは、不規則な時間ステップとグラフの部分的な観測の両方を扱うように設計されている。
これは、Gated Recurrent Unit(GRU)の出力によって定義される線形正規微分方程式(ODE)に従って、各ノードに時間連続の潜伏状態を導入することで達成される。
ODEは指数減衰と周期力学の組み合わせとして明示的な解を持つ。
グラフ近傍での観測は、GRU状態更新と予測モデルの両方にグラフニューラルネットワーク層を統合することで考慮される。
時間連続ダイナミクスは、モデルが任意の時間ステップで予測することを可能にする。
本稿では,これを利用した損失関数を提案し,異なる時間的地平線上で予測するモデルを訓練する。
交通・気候モデルによるシミュレーションデータと実世界データの実験は、不規則な観測条件下でのグラフ構造と時間連続力学の両方の有用性を検証する。
関連論文リスト
- Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs [0.6562256987706128]
HYPA-DBGNNは、グラフ上の時系列データにおける異常なシーケンシャルパターンの推論を組み合わせた、新しい2段階のアプローチである。
本手法は超幾何グラフアンサンブルを利用して1階グラフと高階グラフの両方において異常なエッジを同定する。
我々の研究は、時間的および因果配列異常を利用した統計的に情報を得たGNNを初めて導入した。
論文 参考訳(メタデータ) (2024-06-24T11:41:12Z) - Neural Differential Recurrent Neural Network with Adaptive Time Steps [11.999568208578799]
隠れ状態の時間的発達を表すためにニューラルODEを用いるRNN-ODE-Adapと呼ばれるRNNベースのモデルを提案する。
我々は、データの変化の急激さに基づいて時間ステップを適応的に選択し、「スパイクのような」時系列に対してより効率的にモデルを訓練する。
論文 参考訳(メタデータ) (2023-06-02T16:46:47Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Autoregressive GNN-ODE GRU Model for Network Dynamics [7.272158647379444]
本稿では,AGOG(Autoregressive GNN-ODE GRU Model)を提案する。
我々のモデルは複雑なシステムの連続的動的過程を正確に捉え、最小限の誤差でノード状態の予測を行うことができる。
論文 参考訳(メタデータ) (2022-11-19T05:43:10Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
本稿では、欠落したデータポイントを再構築するための効果的なモデル学習の課題に取り組む。
我々は,高度にスパースな観測値の集合を与えられた注意に基づくアーキテクチャのクラスを提案し,時間と空間における点の表現を学習する。
技術状況と比較して、我々のモデルは予測エラーを伝播したり、前方および後方の時間依存性をエンコードするために双方向モデルを必要とすることなくスパースデータを処理します。
論文 参考訳(メタデータ) (2022-05-26T16:40:48Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。