論文の概要: Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs
- arxiv url: http://arxiv.org/abs/2406.16552v1
- Date: Mon, 24 Jun 2024 11:41:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 15:04:12.040440
- Title: Inference of Sequential Patterns for Neural Message Passing in Temporal Graphs
- Title(参考訳): 時間グラフにおけるニューラルメッセージパッシングの逐次パターン推定
- Authors: Jan von Pichowski, Vincenzo Perri, Lisi Qarkaxhija, Ingo Scholtes,
- Abstract要約: HYPA-DBGNNは、グラフ上の時系列データにおける異常なシーケンシャルパターンの推論を組み合わせた、新しい2段階のアプローチである。
本手法は超幾何グラフアンサンブルを利用して1階グラフと高階グラフの両方において異常なエッジを同定する。
我々の研究は、時間的および因果配列異常を利用した統計的に情報を得たGNNを初めて導入した。
- 参考スコア(独自算出の注目度): 0.6562256987706128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The modelling of temporal patterns in dynamic graphs is an important current research issue in the development of time-aware GNNs. Whether or not a specific sequence of events in a temporal graph constitutes a temporal pattern not only depends on the frequency of its occurrence. We consider whether it deviates from what is expected in a temporal graph where timestamps are randomly shuffled. While accounting for such a random baseline is important to model temporal patterns, it has mostly been ignored by current temporal graph neural networks. To address this issue we propose HYPA-DBGNN, a novel two-step approach that combines (i) the inference of anomalous sequential patterns in time series data on graphs based on a statistically principled null model, with (ii) a neural message passing approach that utilizes a higher-order De Bruijn graph whose edges capture overrepresented sequential patterns. Our method leverages hypergeometric graph ensembles to identify anomalous edges within both first- and higher-order De Bruijn graphs, which encode the temporal ordering of events. The model introduces an inductive bias that enhances model interpretability. We evaluate our approach for static node classification using benchmark datasets and a synthetic dataset that showcases its ability to incorporate the observed inductive bias regarding over- and under-represented temporal edges. We demonstrate the framework's effectiveness in detecting similar patterns within empirical datasets, resulting in superior performance compared to baseline methods in node classification tasks. To the best of our knowledge, our work is the first to introduce statistically informed GNNs that leverage temporal and causal sequence anomalies. HYPA-DBGNN represents a path for bridging the gap between statistical graph inference and neural graph representation learning, with potential applications to static GNNs.
- Abstract(参考訳): 動的グラフにおける時間的パターンのモデリングは、時間を考慮したGNNの開発において、現在重要な研究課題となっている。
時間グラフにおける特定の事象列が時間パターンを構成するか否かは、その発生頻度に限らず、時間パターンを構成する。
タイムスタンプがランダムにシャッフルされる時間グラフで期待するものから逸脱するかどうかを検討する。
このようなランダムなベースラインの説明は時間的パターンをモデル化する上で重要であるが、現在の時間的グラフニューラルネットワークでは無視されている。
この問題に対処するため、我々はHYPA-DBGNNを提案する。
一 統計的に原理化されたヌルモデルに基づくグラフ上の時系列データにおける異常な逐次パターンの推論
(ii) エッジが過剰に表現された逐次パターンをキャプチャする高階のDe Bruijnグラフを利用するニューラルメッセージパッシングアプローチ。
本手法は,超幾何グラフアンサンブルを用いて,事象の時間順序を符号化した1次および高次デ・ブリュアングラフの異常エッジを同定する。
このモデルは、モデル解釈可能性を高める誘導バイアスを導入する。
ベンチマークデータセットと合成データセットを用いて静的ノード分類のアプローチを評価し,時間的エッジの過度および低次エッジに関する観測帰納バイアスを組み込む能力を示す。
経験的データセット内の類似パターンの検出におけるフレームワークの有効性を実証し,ノード分類タスクのベースライン手法よりも優れた性能を示した。
我々の知識を最大限に活用するために、我々の研究は、時間的および因果配列異常を利用した統計的に情報を得たGNNを導入した最初のものである。
HYPA-DBGNNは、統計グラフ推論とニューラルグラフ表現学習のギャップを埋めるパスであり、静的GNNへの潜在的な応用である。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
我々は,変分オートエンコーダ(VAE)を利用して,ノード時系列の特徴とグラフ構造の両方に欠落する値を予測するPoGeVonという新しいモデルを設計する。
実験の結果,ベースライン上でのモデルの有効性が示された。
論文 参考訳(メタデータ) (2023-05-29T21:11:34Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4Iモデルは、不規則な時間ステップとグラフの部分的な観察の両方を扱うように設計されている。
時間連続力学により、任意の時間ステップでモデルを予測できる。
交通・気候モデルによるシミュレーションデータと実世界のデータの実験は、グラフ構造と時間連続力学の両方の有用性を検証する。
論文 参考訳(メタデータ) (2023-02-16T16:47:55Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
動的時系列間グラフのリストに基づく時系列異常検出フレームワークDyGraphADを提案する。
中心となる考え方は、シリーズ間関係とシリーズ間時間パターンの正常状態から異常状態へのずれに基づいて異常を検出することである。
実世界のデータセットに関する数値実験により,DyGraphADはベースライン異常検出手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-02-04T01:27:01Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative
Models [9.75258136573147]
本稿では,時系列グラフ生成のためのTG-GAN'と呼ばれる新しいモデルを提案する。
まず,時間予算とノード属性を共同でモデル化する新しい時間グラフ生成手法を提案する。
さらに、繰り返しアーキテクチャ上での時間とノードの符号化操作を組み合わせて生成されたシーケンスを識別する新しい時間グラフ識別器を提案する。
論文 参考訳(メタデータ) (2020-05-17T17:59:12Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。