Graphical estimation of multivariate count time series
- URL: http://arxiv.org/abs/2302.08801v1
- Date: Fri, 17 Feb 2023 10:54:13 GMT
- Title: Graphical estimation of multivariate count time series
- Authors: Sathish Vurukonda, Debraj Chakraborty, Siuli Mukhopadhyay
- Abstract summary: The algorithm is applied to observed dengue disease counts from each ward of Greater Mumbai city.
It is observed that some special wards act as epicentres of dengue spread even though their disease counts are relatively low.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problems of selecting partial correlation and causality graphs for count
data are considered. A parameter driven generalized linear model is used to
describe the observed multivariate time series of counts. Partial correlation
and causality graphs corresponding to this model explain the dependencies
between each time series of the multivariate count data. In order to estimate
these graphs with tunable sparsity, an appropriate likelihood function
maximization is regularized with an l1-type constraint. A novel MCEM algorithm
is proposed to iteratively solve this regularized MLE. Asymptotic convergence
results are proved for the sequence generated by the proposed MCEM algorithm
with l1-type regularization. The algorithm is first successfully tested on
simulated data. Thereafter, it is applied to observed weekly dengue disease
counts from each ward of Greater Mumbai city. The interdependence of various
wards in the proliferation of the disease is characterized by the edges of the
inferred partial correlation graph. On the other hand, the relative roles of
various wards as sources and sinks of dengue spread is quantified by the number
and weights of the directed edges originating from and incident upon each ward.
From these estimated graphs, it is observed that some special wards act as
epicentres of dengue spread even though their disease counts are relatively
low.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Entropy Causal Graphs for Multivariate Time Series Anomaly Detection [7.402342914903391]
This work proposes a novel framework called CGAD, an entropy Causal Graph for multivariate time series Anomaly Detection.
CGAD utilizes transfer entropy to construct graph structures that unveil the underlying causal relationships among time series data.
CGAD outperforms state-of-the-art methods on real-world datasets with a 15% average improvement.
arXiv Detail & Related papers (2023-12-15T01:35:00Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
We propose DyGraphAD, a time series anomaly detection framework based upon a list of dynamic inter-series graphs.
The core idea is to detect anomalies based on the deviation of inter-series relationships and intra-series temporal patterns from normal to anomalous states.
Our numerical experiments on real-world datasets demonstrate that DyGraphAD has superior performance than baseline anomaly detection approaches.
arXiv Detail & Related papers (2023-02-04T01:27:01Z) - Partial Identification of Treatment Effects with Implicit Generative
Models [20.711877803169134]
We propose a new method for partial identification of average treatment effects(ATEs) in general causal graphs using implicit generative models.
We prove that our algorithm converges to tight bounds on ATE in linear structural causal models.
arXiv Detail & Related papers (2022-10-14T22:18:00Z) - Low-Rank Covariance Completion for Graph Quilting with Applications to Functional Connectivity [8.500141848121782]
In many calcium imaging data sets, the full population of neurons is not recorded simultaneously, but instead in partially overlapping blocks.
In this paper, we introduce a novel two-step approach to Graph Quilting, which first imputes the nuclear structure matrix using low-rank co completion.
We show the efficacy of these methods for estimating connectivity from calcium imaging data.
arXiv Detail & Related papers (2022-09-17T08:03:46Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Inferring extended summary causal graphs from observational time series [4.263043028086137]
We make use of information-theoretic measures to determine (in)dependencies between time series.
The behavior of our methods is illustrated through several experiments run on simulated and real datasets.
arXiv Detail & Related papers (2022-05-19T09:39:57Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Graph Gamma Process Generalized Linear Dynamical Systems [60.467040479276704]
We introduce graph gamma process (GGP) linear dynamical systems to model real multivariate time series.
For temporal pattern discovery, the latent representation under the model is used to decompose the time series into a parsimonious set of multivariate sub-sequences.
We use the generated random graph, whose number of nonzero-degree nodes is finite, to define both the sparsity pattern and dimension of the latent state transition matrix.
arXiv Detail & Related papers (2020-07-25T04:16:34Z) - A Robust Functional EM Algorithm for Incomplete Panel Count Data [66.07942227228014]
We propose a functional EM algorithm to estimate the counting process mean function under a missing completely at random assumption (MCAR)
The proposed algorithm wraps several popular panel count inference methods, seamlessly deals with incomplete counts and is robust to misspecification of the Poisson process assumption.
We illustrate the utility of the proposed algorithm through numerical experiments and an analysis of smoking cessation data.
arXiv Detail & Related papers (2020-03-02T20:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.