Universal spectral correlations in interacting chaotic few-body quantum
systems
- URL: http://arxiv.org/abs/2302.08983v3
- Date: Tue, 13 Jun 2023 15:13:04 GMT
- Title: Universal spectral correlations in interacting chaotic few-body quantum
systems
- Authors: Felix Fritzsch and Maximilian F. I. Kieler
- Abstract summary: We show that the transition of the spectral form factor from the non-interacting to the strongly interacting case can be described as a simple combination of these two limiting cases.
Our approach accurately captures spectral correlations in actual physical system, which we demonstrate for kicked coupled rotors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of random matrix spectral correlations in interacting quantum
systems is a defining feature of quantum chaos. We study such correlations in
terms of the spectral form factor in interacting chaotic few- and many-body
systems, modeled by suitable random-matrix ensembles, and obtain exact results
for large Hilbert space dimensions. The transition of the spectral form factor
from the non-interacting to the strongly interacting case can be described as a
simple combination of these two limiting cases, which we confirm by extensive
numerical studies in few-body systems. This transition is universally governed
by a single scaling parameter. Moreover, our approach accurately captures
spectral correlations in actual physical system, which we demonstrate for
coupled kicked rotors.
Related papers
- Disentangling the Physics of the Attractive Hubbard Model via the
Accessible and Symmetry-Resolved Entanglement Entropies [2.991853491946018]
We show how to compute accessible and symmetry-resolved entanglements for interacting fermion systems.
We apply these tools to study the pairing and charge density waves exhibited in the paradigmatic attractive Hubbard model via entanglement.
arXiv Detail & Related papers (2023-12-18T23:06:19Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Observation of universal dissipative dynamics in strongly correlated
quantum gas [7.693218037362169]
We observe a universal dissipative dynamics in strongly correlated one-dimensional quantum gases.
This method could have broad applications in detecting strongly correlated features, including spin-charge separations and Fermi arcs in quantum materials.
arXiv Detail & Related papers (2023-09-19T02:32:02Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - Universal spectral correlations in interacting chaotic few-body quantum
systems [0.0]
We study correlations in terms of the spectral form factor and its moments in interacting chaotic few- and many-body systems.
We find a universal transition from the non-interacting to the strongly interacting case, which can be described as a simple combination of these two limits.
arXiv Detail & Related papers (2023-02-20T12:49:59Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Uncover quantumness in the crossover from BEC to quantum-correlated
phase [0.0]
We examine the role of the quantum entanglement of an assembly of two-level emitters coupled to a single-mode cavity.
This allows us to characterise the quantum correlated state for each regime.
arXiv Detail & Related papers (2021-01-18T05:06:59Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.