MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
- URL: http://arxiv.org/abs/2302.09048v2
- Date: Mon, 5 Jun 2023 15:26:26 GMT
- Title: MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation
- Authors: Clement Vignac, Nagham Osman, Laura Toni, Pascal Frossard
- Abstract summary: This work introduces MiDi, a novel diffusion model for jointly generating molecular graphs and their corresponding 3D arrangement of atoms.
Unlike existing methods that rely on predefined rules to determine molecular bonds based on the 3D conformation, MiDi offers an end-to-end differentiable approach that streamlines the molecule generation process.
- Score: 47.15291538945242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces MiDi, a novel diffusion model for jointly generating
molecular graphs and their corresponding 3D arrangement of atoms. Unlike
existing methods that rely on predefined rules to determine molecular bonds
based on the 3D conformation, MiDi offers an end-to-end differentiable approach
that streamlines the molecule generation process. Our experimental results
demonstrate the effectiveness of this approach. On the challenging GEOM-DRUGS
dataset, MiDi generates 92% of stable molecules, against 6% for the previous
EDM model that uses interatomic distances for bond prediction, and 40% using
EDM followed by an algorithm that directly optimize bond orders for validity.
Our code is available at github.com/cvignac/MiDi.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - E3STO: Orbital Inspired SE(3)-Equivariant Molecular Representation for Electron Density Prediction [0.0]
We introduce a novel SE(3)-equivariant architecture, drawing inspiration from Slater-Type Orbitals (STO)
Our approach offers an alternative functional form for learned orbital-like molecular representation.
We showcase the effectiveness of our method by achieving SOTA prediction accuracy of molecular electron density with 30-70% improvement over other work on Molecular Dynamics data.
arXiv Detail & Related papers (2024-10-08T15:20:33Z) - Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space [46.11163798008912]
We introduce a new framework for molecular graph generation with 3D molecular generative models.
Our framework maps molecular graphs to Euclidean point clouds via synthetic conformer coordinates and learns the inverse map using an E(n)-Equivariant Graph Neural Network (EGNN)
The induced point cloud-structured latent space is well-suited to apply existing 3D molecular generative models.
arXiv Detail & Related papers (2024-06-15T05:29:07Z) - Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation [32.66694406638287]
We propose a new joint 2D and 3D diffusion model (JODO) that generates molecules with atom types, formal charges, bond information, and 3D coordinates.
Our model can also be extended for inverse molecular design targeting single or multiple quantum properties.
arXiv Detail & Related papers (2023-05-21T04:49:53Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Geometry-Complete Diffusion for 3D Molecule Generation and Optimization [3.8366697175402225]
We introduce the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation.
GCDM outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings.
We also show that GCDM's geometric features can be repurposed to consistently optimize the geometry and chemical composition of existing 3D molecules.
arXiv Detail & Related papers (2023-02-08T20:01:51Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z) - Direct Molecular Conformation Generation [217.4815525740703]
We propose a method that directly predicts the coordinates of atoms.
Our method achieves state-of-the-art results on four public benchmarks.
arXiv Detail & Related papers (2022-02-03T01:01:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.