論文の概要: Turning Noises to Fingerprint-Free "Credentials": Secure and Usable Drone Authentication
- arxiv url: http://arxiv.org/abs/2302.09197v2
- Date: Wed, 10 Apr 2024 04:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 19:55:03.972456
- Title: Turning Noises to Fingerprint-Free "Credentials": Secure and Usable Drone Authentication
- Title(参考訳): 指紋のない「クレデンシャル」へ:安全で使用可能なドローン認証
- Authors: Chuxiong Wu, Qiang Zeng,
- Abstract要約: 我々は、ドローンの音の指紋に頼らず、攻撃に耐性を持ち、環境音下で堅牢な認証システムを構築している。
広範囲な評価は、そのセキュリティとユーザビリティを示している。
- 参考スコア(独自算出の注目度): 6.020502120764117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drones have been widely used in various services, such as delivery and surveillance. Authentication forms the foundation of the security of these services. However, drones are expensive and may carry important payloads. To avoid being captured by attackers, drones should keep a safe distance from the verifier before authentication succeeds. This makes authentication methods that only work in very close proximity not applicable. Our work leverages drone noises for authentication. While using sounds for authentication is highly usable, how to handle various attacks that manipulate sounds is an \emph{unresolved challenge}. It is also unclear how to ensure robustness under various environmental sounds. Being the first in the literature, we address the two major challenges by exploiting unique characteristics of drone noises. We thereby build an authentication system that does \emph{not} rely on any drone sound fingerprints, keeps resilient to attacks, and is robust under environmental sounds. An extensive evaluation demonstrates its security and usability.
- Abstract(参考訳): ドローンは配達や監視など様々なサービスで広く使われている。
認証は、これらのサービスのセキュリティの基盤を形成する。
しかし、ドローンは高価であり、重要なペイロードを運ぶことができる。
攻撃者によって捕獲されるのを避けるために、ドローンは認証が成功する前に検証者から安全な距離を保つ必要がある。
これにより、非常に近接してしか機能しない認証方法が適用できない。
私たちの仕事は、認証にドローンノイズを活用しています。
認証に音を使うことは非常に有用であるが、音を操作する様々な攻撃をどう扱うかは \emph{unresolved challenge} である。
また、様々な環境音の下で頑健性を確保する方法も不明である。
文献の中では、ドローン騒音のユニークな特徴を利用するという2つの大きな課題に対処する。
これにより、ドローンの音の指紋に頼り、攻撃に対する耐性を保ち、環境音下で堅牢な認証システムを構築する。
広範囲な評価は、そのセキュリティとユーザビリティを示している。
関連論文リスト
- Obfuscated Location Disclosure for Remote ID Enabled Drones [57.66235862432006]
RID対応ドローン(OLO-RID)の難読化位置情報開示法を提案する。
実際のドローンの位置を開示する代わりに、OLO-RIDを装備したドローンは、モバイルシナリオで異なるプライベートな難解な場所を開示する。
OLO-RIDはまた、暗号化された位置情報でRIDメッセージを拡張し、認証されたエンティティによってのみアクセスすることができる。
論文 参考訳(メタデータ) (2024-07-19T12:35:49Z) - Drone-type-Set: Drone types detection benchmark for drone detection and tracking [0.6294091730968154]
本稿では,認識された物体検出モデルとの比較とともに,各種ドローンのデータセットを提供する。
異なるモデルの実験結果と各手法の記載が提供される。
論文 参考訳(メタデータ) (2024-05-16T18:56:46Z) - Sticky Fingers: Resilience of Satellite Fingerprinting against Jamming Attacks [13.857226688708353]
干渉・妨害攻撃における無線指紋認証の有効性を評価する。
我々は、メッセージの内容そのものを妨害するのと同じように、指紋を妨害するために、同様の量のジャミングパワーが必要であると結論づける。
論文 参考訳(メタデータ) (2024-02-07T17:28:09Z) - Unauthorized Drone Detection: Experiments and Prototypes [0.8294692832460543]
本稿では、受信信号強度インジケータ(RSSI)と、ドローンの位置座標から生成された暗号鍵の2段階検証を利用する、新しい暗号化ベースのドローン検出方式を提案する。
論文 参考訳(メタデータ) (2022-12-02T20:43:29Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
視覚的フィードを用いたドローンからドローンへの検知は、ドローンの衝突の検出、ドローンの攻撃の検出、他のドローンとの飛行の調整など、重要な応用がある。
既存の手法は計算コストがかかり、非エンドツーエンドの最適化に追随し、複雑なマルチステージパイプラインを持つため、エッジデバイス上でのリアルタイムデプロイメントには適さない。
計算効率を向上したエンドツーエンドのソリューションを提供する,シンプルで効果的なフレームワークであるitTransVisDroneを提案する。
論文 参考訳(メタデータ) (2022-10-16T03:05:13Z) - Locally Authenticated Privacy-preserving Voice Input [10.82818142802482]
サービスプロバイダはユーザを認証しなければならないが、個人はプライバシの維持を望むかもしれない。
認証の実行中にプライバシを保存することは、特に敵がバイオメトリックデータを使用してトランスフォーメーションツールをトレーニングする場合には、非常に難しい。
ユーザの生信号のデバイス上の指紋をキャプチャして保存する,セキュアでフレキシブルなプライバシ保護システムを導入する。
論文 参考訳(メタデータ) (2022-05-27T14:56:01Z) - Watch Those Words: Video Falsification Detection Using Word-Conditioned
Facial Motion [82.06128362686445]
本稿では,安価なディープフェイクと視覚的に説得力のあるディープフェイクの両方を扱うためのマルチモーダルな意味法医学的アプローチを提案する。
帰属という概念を利用して、ある話者と他の話者を区別する個人固有の生体パターンを学習する。
既存の個人固有のアプローチとは異なり、この手法は口唇の操作に焦点を当てた攻撃にも有効である。
論文 参考訳(メタデータ) (2021-12-21T01:57:04Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
本稿では,他の飛行ドローンからドローンを検知する問題に対処する。
ソースとターゲットドローンのエロティックな動き、小型、任意の形状、大きな強度、および閉塞は、この問題を非常に困難にします。
これに対処するため,地域提案に基づく手法ではなく,2段階のセグメンテーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-31T17:43:31Z) - Stay Connected, Leave no Trace: Enhancing Security and Privacy in WiFi
via Obfuscating Radiometric Fingerprints [8.89054576694426]
WiFiチップセットの固有のハードウェア欠陥は、送信された信号に現れ、ユニークなラジオメトリック指紋をもたらす。
近年の研究では、市販品で容易に実装可能な実用的な指紋認証ソリューションが提案されている。
解析的および実験的に、これらのソリューションは偽造攻撃に対して非常に脆弱であることを示す。
本稿では, RF-Veilを提案する。RF-Veilは, 偽造攻撃に対して堅牢なだけでなく, ユーザのプライバシーも保護する。
論文 参考訳(メタデータ) (2020-11-25T11:10:59Z) - Backdoor Attack against Speaker Verification [86.43395230456339]
学習データを汚染することにより,話者検証モデルに隠れたバックドアを注入できることを示す。
また,既存のバックドア攻撃が話者認証攻撃に直接適用できないことも実証した。
論文 参考訳(メタデータ) (2020-10-22T11:10:08Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
GoogleとAppleは共同で,Bluetooth Low Energyを使用した分散型コントラクトトレースアプリを実装するための公開通知APIを提供している。
実世界のシナリオでは、GAP設計は(i)プロファイリングに脆弱で、(ii)偽の連絡先を生成できるリレーベースのワームホール攻撃に弱いことを実証する。
論文 参考訳(メタデータ) (2020-06-10T16:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。