論文の概要: Drone-type-Set: Drone types detection benchmark for drone detection and tracking
- arxiv url: http://arxiv.org/abs/2405.10398v1
- Date: Thu, 16 May 2024 18:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:33:08.644982
- Title: Drone-type-Set: Drone types detection benchmark for drone detection and tracking
- Title(参考訳): ドローン型セット:ドローン検出と追跡のためのドローン型検出ベンチマーク
- Authors: Kholoud AlDosari, AIbtisam Osman, Omar Elharrouss, Somaya AlMaadeed, Mohamed Zied Chaari,
- Abstract要約: 本稿では,認識された物体検出モデルとの比較とともに,各種ドローンのデータセットを提供する。
異なるモデルの実験結果と各手法の記載が提供される。
- 参考スコア(独自算出の注目度): 0.6294091730968154
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Unmanned Aerial Vehicles (UAVs) market has been significantly growing and Considering the availability of drones at low-cost prices the possibility of misusing them, for illegal purposes such as drug trafficking, spying, and terrorist attacks posing high risks to national security, is rising. Therefore, detecting and tracking unauthorized drones to prevent future attacks that threaten lives, facilities, and security, become a necessity. Drone detection can be performed using different sensors, while image-based detection is one of them due to the development of artificial intelligence techniques. However, knowing unauthorized drone types is one of the challenges due to the lack of drone types datasets. For that, in this paper, we provide a dataset of various drones as well as a comparison of recognized object detection models on the proposed dataset including YOLO algorithms with their different versions, like, v3, v4, and v5 along with the Detectronv2. The experimental results of different models are provided along with a description of each method. The collected dataset can be found in https://drive.google.com/drive/folders/1EPOpqlF4vG7hp4MYnfAecVOsdQ2JwBEd?usp=share_link
- Abstract(参考訳): 無人航空機(UAV)市場は著しく成長しており、低コストでドローンを利用できることを考えると、麻薬密売、スパイ活動、テロ攻撃などの違法な目的のために、ドローンを誤用する可能性が高まっている。
そのため、生命、施設、安全を脅かす将来の攻撃を防ぐために、無許可のドローンを検出し、追跡する必要がある。
ドローン検出は異なるセンサーを使用して行うことができ、一方、画像に基づく検出は人工知能技術の発展によるその1つである。
しかしながら、無人ドローンの型を知ることは、ドローンタイプのデータセットが欠如していることによる課題の1つだ。
そこで本論文では,提案したデータセット上でのさまざまなドローンのデータセットと,対象検出モデルの比較を行うとともに,その対象検出モデルと,その異なるバージョンであるv3,v4,v5と,Derctionronv2との比較を行う。
異なるモデルの実験結果と各手法の記載が提供される。
収集されたデータセットはhttps://drive.google.com/drive/folders/1EPOpqlF4vG7hp4MYnfAecVOsdQ2JwBEd?
usp=share_link
関連論文リスト
- DroBoost: An Intelligent Score and Model Boosting Method for Drone Detection [1.2564343689544843]
ドローン検出は、画像の可視性や品質が好ましくないような、困難な物体検出タスクである。
私たちの仕事は、いくつかの改善を組み合わせることで、以前のアプローチを改善します。
提案された技術は、Drone vs. Bird Challengeで1位を獲得した。
論文 参考訳(メタデータ) (2024-06-30T20:49:56Z) - Sound-based drone fault classification using multitask learning [7.726132010393797]
本稿では,DNN断層分類器とドローン音声データセットを提案する。
データセットは、無響室の3つの異なるドローンに搭載されたマイクからドローンの操作音を収集することで構築された。
得られたデータセットを用いて、短時間の入力波形から機械的故障の種類とその位置を分類する分類器である1DCNN-ResNetを訓練する。
論文 参考訳(メタデータ) (2023-04-23T17:55:40Z) - Unauthorized Drone Detection: Experiments and Prototypes [0.8294692832460543]
本稿では、受信信号強度インジケータ(RSSI)と、ドローンの位置座標から生成された暗号鍵の2段階検証を利用する、新しい暗号化ベースのドローン検出方式を提案する。
論文 参考訳(メタデータ) (2022-12-02T20:43:29Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
視覚的フィードを用いたドローンからドローンへの検知は、ドローンの衝突の検出、ドローンの攻撃の検出、他のドローンとの飛行の調整など、重要な応用がある。
既存の手法は計算コストがかかり、非エンドツーエンドの最適化に追随し、複雑なマルチステージパイプラインを持つため、エッジデバイス上でのリアルタイムデプロイメントには適さない。
計算効率を向上したエンドツーエンドのソリューションを提供する,シンプルで効果的なフレームワークであるitTransVisDroneを提案する。
論文 参考訳(メタデータ) (2022-10-16T03:05:13Z) - Track Boosting and Synthetic Data Aided Drone Detection [0.0]
本手法は, YOLOv5モデルを実データおよび合成データで微調整することにより, ドローン検出問題にアプローチする。
以上の結果から,合成データの最適なサブセットで実データを増やすことで,性能が向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-24T10:16:27Z) - A dataset for multi-sensor drone detection [67.75999072448555]
近年,小型・遠隔操作無人航空機(UAV)の使用が増加している。
ドローン検出に関するほとんどの研究は、取得デバイスの種類、ドローンの種類、検出範囲、データセットを特定することに失敗している。
我々は、赤外線および可視ビデオとオーディオファイルを含むドローン検出のための注釈付きマルチセンサーデータベースにコントリビュートする。
論文 参考訳(メタデータ) (2021-11-02T20:52:03Z) - Scarce Data Driven Deep Learning of Drones via Generalized Data
Distribution Space [12.377024173799631]
GAN(Generative Adversarial Network)を通じて、ドローンデータの一般的な分布を理解することで、不足したデータを取得して、迅速かつ正確な学習を実現することができることを示す。
我々は、実際のドローン画像とコンピュータ支援設計のシミュレーション画像の両方を含むドローン画像データセット上で、我々の結果を実証した。
論文 参考訳(メタデータ) (2021-08-18T17:07:32Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
本稿では,他の飛行ドローンからドローンを検知する問題に対処する。
ソースとターゲットドローンのエロティックな動き、小型、任意の形状、大きな強度、および閉塞は、この問題を非常に困難にします。
これに対処するため,地域提案に基づく手法ではなく,2段階のセグメンテーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-31T17:43:31Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
熱赤外カメラは、ドローン検出タスクに対する実現可能な解決策であることが示されている。
また,センサ間距離の関数としての検出器性能についても検討した。
ドローン、鳥、飛行機、ヘリコプターの650個の注釈付き赤外線と可視ビデオを含む新しいビデオデータセットも紹介されている。
論文 参考訳(メタデータ) (2020-07-14T23:06:42Z) - University-1652: A Multi-view Multi-source Benchmark for Drone-based
Geo-localization [87.74121935246937]
我々は、ドローンによるジオローカライゼーションのための新しいマルチビューベンチマーク、University-1652を紹介する。
大学1652は、世界中の1,652の大学の建物から合成ドローン、衛星、地上カメラなどの3つのプラットフォームからのデータを含んでいる。
実験の結果,University-1652は視点不変の特徴の学習を支援し,実世界のシナリオにおいて優れた一般化能力を有することが示された。
論文 参考訳(メタデータ) (2020-02-27T15:24:15Z) - Detection and Tracking Meet Drones Challenge [131.31749447313197]
本稿では、オブジェクト検出・追跡データセットとベンチマークのレビューを行い、手動アノテーションによる大規模ドローンによるオブジェクト検出・追跡データセットの収集の課題について論じる。
当社のVisDroneデータセットは、中国北部から南部にかけての14の都市部と郊外部で収集されたものです。
本稿では,ドローンにおける大規模物体検出・追跡の現場の現状を詳細に分析し,今後の方向性を提案するとともに,課題を結論づける。
論文 参考訳(メタデータ) (2020-01-16T00:11:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。