Rank-Minimizing and Structured Model Inference
- URL: http://arxiv.org/abs/2302.09521v1
- Date: Sun, 19 Feb 2023 09:46:35 GMT
- Title: Rank-Minimizing and Structured Model Inference
- Authors: Pawan Goyal and Benjamin Peherstorfer and Peter Benner
- Abstract summary: This work introduces a method that infers models from data with physical insights encoded in the form of structure.
The proposed method numerically solves the equations for minimal-rank solutions and so obtains models of low order.
Numerical experiments demonstrate that the combination of structure preservation and rank leads to accurate models with orders of magnitude fewer degrees of freedom than models of comparable prediction quality.
- Score: 7.067529286680843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While extracting information from data with machine learning plays an
increasingly important role, physical laws and other first principles continue
to provide critical insights about systems and processes of interest in science
and engineering. This work introduces a method that infers models from data
with physical insights encoded in the form of structure and that minimizes the
model order so that the training data are fitted well while redundant degrees
of freedom without conditions and sufficient data to fix them are automatically
eliminated. The models are formulated via solution matrices of specific
instances of generalized Sylvester equations that enforce interpolation of the
training data and relate the model order to the rank of the solution matrices.
The proposed method numerically solves the Sylvester equations for minimal-rank
solutions and so obtains models of low order. Numerical experiments demonstrate
that the combination of structure preservation and rank minimization leads to
accurate models with orders of magnitude fewer degrees of freedom than models
of comparable prediction quality that are learned with structure preservation
alone.
Related papers
- Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
We discuss a hybrid framework that can work on a variable amount of data by relying on the modularity of the elastoplasticity formulation.
The discovered material models are found to not only interpolate well but also allow for accurate extrapolation in a thermodynamically consistent manner far outside the domain of the training data.
arXiv Detail & Related papers (2022-10-15T17:35:23Z) - Scientific Machine Learning for Modeling and Simulating Complex Fluids [0.0]
rheological equations relate internal stresses and deformations in complex fluids.
Data-driven models provide accessible alternatives to expensive first-principles models.
Development of similar models for complex fluids has lagged.
arXiv Detail & Related papers (2022-10-10T04:35:31Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
This paper introduces the constrained Sufficiently Accurate model learning approach.
It provides examples of such problems, and presents a theorem on how close some approximate solutions can be.
The approximate solution quality will depend on the function parameterization, loss and constraint function smoothness, and the number of samples in model learning.
arXiv Detail & Related papers (2021-02-11T16:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.