論文の概要: A Comprehensive Evaluation Study on Risk Level Classification of
Melanoma by Computer Vision on ISIC 2016-2020 Datasets
- arxiv url: http://arxiv.org/abs/2302.09528v1
- Date: Sun, 19 Feb 2023 09:58:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 17:59:50.513416
- Title: A Comprehensive Evaluation Study on Risk Level Classification of
Melanoma by Computer Vision on ISIC 2016-2020 Datasets
- Title(参考訳): ISIC 2016-2020データセットを用いたコンピュータビジョンによるメラノーマのリスクレベル分類に関する総合的評価
- Authors: Chengdong Yao
- Abstract要約: メラノーマは皮膚がんの75%の死因である。
メラノーマの検出は何百万人もの人に良い影響を与える可能性がある。
ISICアーカイブは皮膚病変の皮膚内視鏡像の収集で最大である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Skin cancer is the most common type of cancer. Specifically, melanoma is the
cause of 75% of skin cancer deaths, although it is the least common skin
cancer. Better detection of melanoma could have a positive impact on millions
of people. The ISIC archive contains the largest publicly available collection
of dermatoscopic images of skin lesions. In this research, we investigate the
efficacy of applying advanced deep learning techniques in computer vision to
identify melanoma in images of skin lesions. Through reviewing previous
methods, including pre-trained models, deep-learning classifiers, transfer
learning, etc., we demonstrate the applicability of the popular deep learning
methods on critical clinical problems such as identifying melanoma. Finally, we
proposed a processing flow with a validation AUC greater than 94% and a
sensitivity greater than 90% on ISIC 2016 - 2020 datasets.
- Abstract(参考訳): 皮膚がんは最も一般的な種類のがんである。
特にメラノーマは皮膚がん死の75%の原因であるが、最も一般的な皮膚がんである。
メラノーマの検出は何百万人もの人に良い影響を与える可能性がある。
ISICアーカイブには皮膚病変の皮膚内視鏡像のコレクションが最大である。
本研究では,コンピュータビジョンに高度な深層学習技術を適用し,皮膚病変の画像におけるメラノーマの同定の有効性を検討した。
先行訓練モデル,深層学習分類器,移動学習などを含む過去の手法の見直しを通じて,メラノーマの同定などの臨床的問題に対する一般的な深層学習法の適用性を示す。
最後に,isic 2016 - 2020データセットにおいて,バリデーションaucが94%以上,感度が90%以上の処理フローを提案する。
関連論文リスト
- Skin Cancer Detection utilizing Deep Learning: Classification of Skin Lesion Images using a Vision Transformer [0.0]
我々は、自己認識機構のアイデアに基づいて開発された視覚変換器(ViT)を用いる。
ViT-L32モデルは91.57%、メラノーマリコールは58.54%、ViT-L16は92.79%、メラノーマリコールは56.10%である。
論文 参考訳(メタデータ) (2024-07-26T07:06:42Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - Double-Condensing Attention Condenser: Leveraging Attention in Deep Learning to Detect Skin Cancer from Skin Lesion Images [61.36288157482697]
皮膚がんはアメリカ合衆国で最も一般的な種類のがんであり、5人に1人のアメリカ人に影響を与えると推定されている。
近年の進歩は,SIIM-ISICメラノーマ分類チャレンジのアートパフォーマンスの状況から,皮膚がん検出に強い効果を示している。
本稿では,皮膚病変画像の皮膚癌検出に効率的な自己注意構造を活用し,皮膚病変画像からの皮膚癌検出をカスタマイズしたDC-ACを用いたディープニューラルネットワーク設計を提案する。
論文 参考訳(メタデータ) (2023-11-20T10:45:39Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - A Comparative Analysis of Transfer Learning-based Techniques for the
Classification of Melanocytic Nevi [0.0]
皮膚細胞中の脱オキシリボ核酸 (DNA) は皮膚に遺伝的欠陥を生じ、皮膚がんを引き起こす。
病変特異的基準を用いて良性皮膚癌と悪性黒色腫を鑑別する。
5つのトランスファーラーニングに基づく技術は、メラノサイトネビの分類に活用される可能性がある。
論文 参考訳(メタデータ) (2022-11-20T12:55:42Z) - Melanoma Skin Cancer and Nevus Mole Classification using Intensity Value
Estimation with Convolutional Neural Network [0.0]
メラノーマ皮膚がんは最も危険で致命的ながんの一つである。
紫外線への曝露は皮膚細胞のDNAを損傷し、メラノーマ皮膚がんを引き起こす。
未熟期の悪性黒色腫とnevus moleの検出・分類は困難である。
論文 参考訳(メタデータ) (2022-09-30T13:35:24Z) - A Smartphone based Application for Skin Cancer Classification Using Deep
Learning with Clinical Images and Lesion Information [1.8199326045904993]
ディープニューラルネットワーク(DNN)は皮膚がんの検出に有効である。
本研究では,スマートフォンを用いた皮膚がん検出支援アプリケーションを提案する。
論文 参考訳(メタデータ) (2021-04-28T16:51:00Z) - CancerNet-SCa: Tailored Deep Neural Network Designs for Detection of
Skin Cancer from Dermoscopy Images [71.68436132514542]
皮膚がんはアメリカ合衆国で最も頻繁に診断されるがんである。
本研究では,皮膚内視鏡画像から皮膚がんを検出するための深層神経回路の設計手法である CancerNet-SCa について紹介する。
論文 参考訳(メタデータ) (2020-11-21T02:17:59Z) - AI outperformed every dermatologist: Improved dermoscopic melanoma
diagnosis through customizing batch logic and loss function in an optimized
Deep CNN architecture [2.572959153453185]
本研究では,メラノーマを二項分類問題として検出することを目的としたディープ畳み込みニューラルネットワークを用いた手法を提案する。
これには3つの重要な機能、すなわち、カスタマイズされたバッチロジック、カスタマイズされた損失関数、完全に接続されたレイヤが含まれる。
このモデルは157人の皮膚科医に優れ、AUCでは94.4%、感度は85.0%、特異度は95.0%であった。
論文 参考訳(メタデータ) (2020-03-05T13:19:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。