論文の概要: Auto.gov: Learning-based On-chain Governance for Decentralized Finance
(DeFi)
- arxiv url: http://arxiv.org/abs/2302.09551v2
- Date: Sat, 6 May 2023 09:54:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 22:49:24.373737
- Title: Auto.gov: Learning-based On-chain Governance for Decentralized Finance
(DeFi)
- Title(参考訳): auto.gov: 分散金融(defi)のための学習に基づくオンチェーンガバナンス
- Authors: Jiahua Xu, Daniel Perez, Yebo Feng, Benjamin Livshits
- Abstract要約: 分散型金融(DeFi)プロトコルはオフチェーンガバナンスを採用しており、トークン保有者がパラメータの変更に投票する。
しかしながら、プロトコルのコアチームがしばしば行う手動パラメータ調整は、システムの完全性とセキュリティを損なうことなく、衝突に対して脆弱である。
我々は、DeFiのための学習ベースのオンチェーンガバナンスフレームワークであるAuto.govを紹介し、セキュリティを強化し、攻撃に対する感受性を低減する。
- 参考スコア(独自算出の注目度): 18.849149890999687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, decentralized finance (DeFi) has experienced remarkable
growth, with various protocols such as lending protocols and automated market
makers (AMMs) emerging. Traditionally, these protocols employ off-chain
governance, where token holders vote to modify parameters. However, manual
parameter adjustment, often conducted by the protocol's core team, is
vulnerable to collusion, compromising the integrity and security of the system.
Furthermore, purely deterministic, algorithm-based approaches may expose the
protocol to novel exploits and attacks.
In this paper, we present "Auto.gov", a learning-based on-chain governance
framework for DeFi that enhances security and reduces susceptibility to
attacks. Our model leverages a deep Q- network (DQN) reinforcement learning
approach to propose semi-automated, intuitive governance proposals with
quantitative justifications. This methodology enables the system to efficiently
adapt to and mitigate the negative impact of malicious behaviors, such as price
oracle attacks, more effectively than benchmark models. Our evaluation
demonstrates that Auto.gov offers a more reactive, objective, efficient, and
resilient solution compared to existing manual processes, thereby significantly
bolstering the security and, ultimately, enhancing the profitability of DeFi
protocols.
- Abstract(参考訳): 近年、分散型金融(DeFi)は著しい成長を遂げており、貸し出しプロトコルや自動市場メーカ(AMM)など様々なプロトコルが出現している。
従来、これらのプロトコルはオフチェーンガバナンスを採用しており、トークンホルダがパラメータの変更を投票する。
しかしながら、プロトコルのコアチームがしばしば行う手動パラメータ調整は、システムの完全性とセキュリティを損なうことなく、衝突に対して脆弱である。
さらに、純粋に決定論的でアルゴリズムに基づくアプローチは、プロトコルを新たなエクスプロイトや攻撃にさらす可能性がある。
本稿では,セキュリティを強化し,攻撃感受性を低下させるdefiのための学習ベースのオンチェーンガバナンスフレームワーク"auto.gov"を提案する。
本モデルでは,ディープq-ネットワーク(dqn)強化学習手法を用いて,半自動的で直感的なガバナンス提案を定量的に提案する。
この手法は、ベンチマークモデルよりも効果的に、価格やオラクル攻撃のような悪意ある行動のネガティブな影響を効果的に適応し、緩和することを可能にする。
我々の評価は、Auto.govが既存の手動プロセスと比較してより反応性が高く、客観的で、効率的で、レジリエントなソリューションを提供し、それによってセキュリティを大幅に強化し、最終的にはDeFiプロトコルの利益性を高めます。
関連論文リスト
- Improving DeFi Accessibility through Efficient Liquidity Provisioning with Deep Reinforcement Learning [0.3376269351435395]
本稿では,DeFiプロトコルにおける流動性提供を最適化するために,深層強化学習(DRL)を適用した。
より効率的な流動性管理を促進することで、この取り組みはDeFi市場をよりアクセスしやすくし、幅広い参加者を包括的にすることを目的としている。
論文 参考訳(メタデータ) (2025-01-13T17:27:11Z) - Towards Autonomous Cybersecurity: An Intelligent AutoML Framework for Autonomous Intrusion Detection [21.003217781832923]
本稿では,次世代ネットワークにおける自律型サイバーセキュリティの実現に向けた,自動機械学習(AutoML)に基づく自律型IDSフレームワークを提案する。
提案されたAutoMLベースのIDSは、CICIDS 2017と5G-NIDDという2つの公開ベンチマークネットワークセキュリティデータセットで評価された。
この研究は、次世代ネットワークにおける完全自律型サイバーセキュリティへの重要な一歩であり、ネットワークセキュリティアプリケーションに革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-09-05T00:36:23Z) - Poisoning Attacks on Federated Learning-based Wireless Traffic Prediction [4.968718867282096]
Federated Learning (FL)は、複数の基地局でグローバルコントロールモデルをトレーニングするための分散フレームワークを提供する。
これは、無線トラフィック予測(WTP)のようなアプリケーションにとって理想的であり、ネットワークリソースの最適化において重要な役割を果たす。
FLベースの分散無線システムのセキュリティ面、特に回帰ベースのWTP問題については、その約束にもかかわらず、不適切な調査が続けられている。
論文 参考訳(メタデータ) (2024-04-22T17:50:27Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
本研究の目的は,モデルベース学習によるマルチエージェント制御のデータ効率の向上である。
エージェントが協力的であり、隣人とのみローカルに通信するネットワークシステムについて検討する。
提案手法では,各エージェントが将来の状態を予測し,通信によって予測をブロードキャストする動的モデルを学習し,その後,モデルロールアウトに基づいてポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-07-13T23:52:14Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
実データ比率を自動的にスケジュールするAutoMBPOというフレームワークを提案する。
本稿ではまず,政策訓練における実データの役割を理論的に分析し,実際のデータの比率を徐々に高めれば,より優れた性能が得られることを示唆する。
論文 参考訳(メタデータ) (2021-11-16T15:24:59Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
強化学習 (Reinforcement Learning, RL) は, 意思決定および最適制御プロセスのための有望な解法として広く研究されている。
本稿では,Adaptive ADMM (asI-ADMM)アルゴリズムを提案する。
実験の結果,提案アルゴリズムは通信コストやスケーラビリティの観点から技術状況よりも優れており,複雑なIoT環境に適応できることがわかった。
論文 参考訳(メタデータ) (2021-06-30T16:49:07Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
CAV(コネクテッド・アンド・自律車両)の自律制御設計のための新しい統合学習(FL)フレームワークの提案
CAVの移動性、無線フェーディングチャネル、および不均衡で非独立で同一に分散されたデータを考慮に入れた新しい動的フェデレーション・プロキシ(DFP)アルゴリズムが提案されている。
最適制御器を用いてCAVがどの程度の速度で収束するかを同定するために,提案アルゴリズムに対して厳密な収束解析を行う。
論文 参考訳(メタデータ) (2021-02-05T19:57:47Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
物の経済(EoT)は、ピアツーピアの信頼性のないネットワークで動作するソフトウェアエージェントに基づいています。
基本的価値と技術的可能性が異なる現在のソリューションの概要を述べる。
我々は,暗号ベースの分散型の信頼できない要素の強みと,確立された,十分に規制された支払い手段を組み合わせることを提案する。
論文 参考訳(メタデータ) (2020-07-03T10:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。