論文の概要: Language-Specific Representation of Emotion-Concept Knowledge Causally
Supports Emotion Inference
- arxiv url: http://arxiv.org/abs/2302.09582v5
- Date: Tue, 12 Mar 2024 14:55:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 02:24:19.249482
- Title: Language-Specific Representation of Emotion-Concept Knowledge Causally
Supports Emotion Inference
- Title(参考訳): 感情推論を支援する感情概念知識の言語特異的表現
- Authors: Ming Li, Yusheng Su, Hsiu-Yuan Huang, Jiali Cheng, Xin Hu, Xinmiao
Zhang, Huadong Wang, Yujia Qin, Xiaozhi Wang, Kristen A. Lindquist, Zhiyuan
Liu, Dan Zhang
- Abstract要約: この研究は、大規模言語モデル(LLMs)として知られる人工知能の形式を用いて、言語に基づく感情の表現が、新しい状況の感情的意味に関する推論を生成するAIの能力に因果的に寄与するかどうかを評価する。
本研究は,LLMでも知覚モダ表現の欠如による感情の学習が可能であり,言語由来の感情概念知識の感情推論への寄与を強調した。
- 参考スコア(独自算出の注目度): 44.126681295827794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans no doubt use language to communicate about their emotional
experiences, but does language in turn help humans understand emotions, or is
language just a vehicle of communication? This study used a form of artificial
intelligence (AI) known as large language models (LLMs) to assess whether
language-based representations of emotion causally contribute to the AI's
ability to generate inferences about the emotional meaning of novel situations.
Fourteen attributes of human emotion concept representation were found to be
represented by the LLM's distinct artificial neuron populations. By
manipulating these attribute-related neurons, we in turn demonstrated the role
of emotion concept knowledge in generative emotion inference. The
attribute-specific performance deterioration was related to the importance of
different attributes in human mental space. Our findings provide a
proof-in-concept that even a LLM can learn about emotions in the absence of
sensory-motor representations and highlight the contribution of
language-derived emotion-concept knowledge for emotion inference.
- Abstract(参考訳): 人間は間違いなく言語を使って感情的な経験を伝えるが、言語は人間が感情を理解するのを助けるのか、それとも言語は単なるコミュニケーションの手段なのか?
本研究では、大規模言語モデル(LLM)として知られる人工知能(AI)の形式を用いて、感情の言語に基づく表現が、新しい状況の感情的意味に関する推論を生成するAIの能力に因果的に寄与するかどうかを評価する。
ヒトの感情概念の表現の14の属性は、LLMの異なる人工ニューロン集団によって表現されている。
これらの属性関連ニューロンを操作することで、生成的感情推論における感情概念知識の役割を実証した。
属性特異的なパフォーマンス劣化は、人間の精神空間における異なる属性の重要性に関連していた。
本研究は,LLMでも知覚モダ表現の欠如による感情の学習が可能であり,言語由来の感情概念知識の感情推論への寄与を強調した。
関連論文リスト
- AER-LLM: Ambiguity-aware Emotion Recognition Leveraging Large Language Models [18.482881562645264]
この研究は、あいまいな感情を認識する上でのLarge Language Models(LLM)の可能性を探究する最初のものである。
我々はゼロショットと少数ショットのプロンプトを設計し、過去の対話を曖昧な感情認識のための文脈情報として組み込んだ。
論文 参考訳(メタデータ) (2024-09-26T23:25:21Z) - Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
EmotionPromptはAIモデルの性能を向上し、EmotionAttackはそれを妨げうることを示す。
EmotionDecodeによると、AIモデルは人間の脳内のドーパミンのメカニズムに似た感情的な刺激を理解することができる。
論文 参考訳(メタデータ) (2023-12-18T11:19:45Z) - Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory [8.439724621886779]
LLM(Large Language Models)の開発は、人間中心の人工知能(AGI)に希望の光を与えている。
共感は人間にとって重要な感情的属性として機能し、人間中心のAGIにおいて不定の役割を果たす。
本稿では,社会学における自己表現理論にインスパイアされた革新的なエンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2023-12-14T07:38:12Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
次世代の人工知能(AEI)は、より深く、より有意義な人間と機械の相互作用に対するユーザの欲求に対処するために、中心的な段階を採っている。
心理学における歴史的焦点である感情の理論とは異なり、感情モデルは記述的な道具である。
この研究は、社会ロボティクス、人間と機械の相互作用、メンタルヘルスケア、計算心理学に幅広い影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-15T15:21:30Z) - Emotion Intensity and its Control for Emotional Voice Conversion [77.05097999561298]
感情音声変換(EVC)は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変換しようとする。
本稿では,感情の強さを明示的に表現し,制御することを目的とする。
本稿では,話者スタイルを言語内容から切り離し,連続した空間に埋め込み,感情埋め込みのプロトタイプを形成するスタイルに符号化することを提案する。
論文 参考訳(メタデータ) (2022-01-10T02:11:25Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
マルチモーダル感情認識(MER)のいくつかの重要な側面について論じる。
まず、広く使われている感情表現モデルと感情モダリティの簡単な紹介から始める。
次に、既存の感情アノテーション戦略とそれに対応する計算タスクを要約する。
最後に,実世界のアプリケーションについて概説し,今後の方向性について論じる。
論文 参考訳(メタデータ) (2021-08-18T21:55:20Z) - Emotion Recognition under Consideration of the Emotion Component Process
Model [9.595357496779394]
我々はScherer (2005) による感情成分プロセスモデル (CPM) を用いて感情コミュニケーションを説明する。
CPMは、感情は、出来事、すなわち主観的感情、認知的評価、表現、生理的身体反応、動機的行動傾向に対する様々なサブコンポーネントの協調過程であると述べている。
Twitter上での感情は、主に出来事の説明や主観的な感情の報告によって表現されているのに対し、文献では、著者はキャラクターが何をしているかを記述し、解釈を読者に任せることを好む。
論文 参考訳(メタデータ) (2021-07-27T15:53:25Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - Detecting Emotion Primitives from Speech and their use in discerning
Categorical Emotions [16.886826928295203]
感情は人間同士のコミュニケーションにおいて重要な役割を担い、幸福やフラストレーション、誠実さといった感情を伝えることができる。
この研究は、感情プリミティブが、幸福、嫌悪、軽蔑、怒り、驚きといったカテゴリー的感情を中性的なスピーチから検出する方法について研究した。
以上の結果から, 覚醒と支配は, 感情のより優れた検出方法であった。
論文 参考訳(メタデータ) (2020-01-31T03:11:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。