論文の概要: Artificial Intelligence Can Emulate Human Normative Judgments on Emotional Visual Scenes
- arxiv url: http://arxiv.org/abs/2503.18796v1
- Date: Mon, 24 Mar 2025 15:41:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:07.869558
- Title: Artificial Intelligence Can Emulate Human Normative Judgments on Emotional Visual Scenes
- Title(参考訳): 人工知能は感情の視覚シーンで人間の規範的判断をエミュレートできる
- Authors: Zaira Romeo, Alberto Testolin,
- Abstract要約: 現状のマルチモーダルシステムは、標準化された画像に対して人間の感情評価をエミュレートできるかどうかを検討する。
AIの判断は、平均的な人間の評価と驚くほどよく相関している。
- 参考スコア(独自算出の注目度): 0.09208007322096533
- License:
- Abstract: Affective reactions have deep biological foundations, however in humans the development of emotion concepts is also shaped by language and higher-order cognition. A recent breakthrough in AI has been the creation of multimodal language models that exhibit impressive intellectual capabilities, but their responses to affective stimuli have not been investigated. Here we study whether state-of-the-art multimodal systems can emulate human emotional ratings on a standardized set of images, in terms of affective dimensions and basic discrete emotions. The AI judgements correlate surprisingly well with the average human ratings: given that these systems were not explicitly trained to match human affective reactions, this suggests that the ability to visually judge emotional content can emerge from statistical learning over large-scale databases of images paired with linguistic descriptions. Besides showing that language can support the development of rich emotion concepts in AI, these findings have broad implications for sensitive use of multimodal AI technology.
- Abstract(参考訳): 感情反応は深い生物学的基盤を持つが、人間では感情の概念の発達は言語や高次認知によっても形成される。
最近のAIのブレークスルーは、印象的な知的能力を示すマルチモーダル言語モデルの作成であるが、その感情的刺激に対する反応は研究されていない。
本稿では,現在最先端のマルチモーダルシステムが,情緒的次元と基本的な離散的感情の観点から,人間の感情評価を標準化された画像にエミュレートできるかどうかを検討する。
これらのシステムは、人間の感情的な反応に合わせて明示的に訓練されていないことを考えると、視覚的に感情的コンテンツを判断する能力は、言語的な記述と組み合わせた大規模な画像データベースよりも統計的に学習できることが示唆される。
これらの発見は、言語がAIにおけるリッチな感情概念の開発を支援することができることを示すだけでなく、マルチモーダルAIテクノロジーのセンシティブな利用に広く影響している。
関連論文リスト
- MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis [53.012111671763776]
そこで本研究では、7,145枚の肖像画からなる総合的なベンチマークであるMEMO-Benchを紹介した。
以上の結果から,既存のT2Iモデルは負のモデルよりも肯定的な感情を生成するのに効果的であることが示唆された。
MLLMは人間の感情の識別と認識に一定の効果を示すが、人間のレベルの正確さには欠ける。
論文 参考訳(メタデータ) (2024-11-18T02:09:48Z) - EmoLLM: Multimodal Emotional Understanding Meets Large Language Models [61.179731667080326]
マルチモーダル・大規模言語モデル(MLLM)は、目的とするマルチモーダル認識タスクにおいて顕著な性能を達成している。
しかし、主観的、感情的にニュアンスのあるマルチモーダルコンテンツを解釈する能力はほとんど解明されていない。
EmoLLMは、マルチモーダルな感情理解のための新しいモデルであり、2つのコア技術が組み込まれている。
論文 参考訳(メタデータ) (2024-06-24T08:33:02Z) - Improved Emotional Alignment of AI and Humans: Human Ratings of Emotions Expressed by Stable Diffusion v1, DALL-E 2, and DALL-E 3 [10.76478480925475]
生成AIシステムは、テキストや画像を通じて感情を表現する能力がますます高まっている。
生成的AIによって表現される感情と人間の知覚のアライメントを測定する。
我々は、アライメントが使用するAIモデルと感情そのものに大きく依存していることを示します。
論文 参考訳(メタデータ) (2024-05-28T18:26:57Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
EmotionPromptはAIモデルの性能を向上し、EmotionAttackはそれを妨げうることを示す。
EmotionDecodeによると、AIモデルは人間の脳内のドーパミンのメカニズムに似た感情的な刺激を理解することができる。
論文 参考訳(メタデータ) (2023-12-18T11:19:45Z) - Socratis: Are large multimodal models emotionally aware? [63.912414283486555]
既存の感情予測ベンチマークでは、様々な理由で画像やテキストが人間にもたらす感情の多様性を考慮していない。
社会反応ベンチマークであるソクラティス (Socratis) を提案し, それぞれのイメージ・キャプション(IC) ペアに複数の感情とそれらを感じる理由をアノテートする。
我々は、ICペアが与えられた感情を感じる理由を生成するために、最先端のマルチモーダルな大規模言語モデルの能力をベンチマークする。
論文 参考訳(メタデータ) (2023-08-31T13:59:35Z) - Language-Specific Representation of Emotion-Concept Knowledge Causally
Supports Emotion Inference [44.126681295827794]
この研究は、大規模言語モデル(LLMs)として知られる人工知能の形式を用いて、言語に基づく感情の表現が、新しい状況の感情的意味に関する推論を生成するAIの能力に因果的に寄与するかどうかを評価する。
本研究は,LLMでも知覚モダ表現の欠如による感情の学習が可能であり,言語由来の感情概念知識の感情推論への寄与を強調した。
論文 参考訳(メタデータ) (2023-02-19T14:21:33Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
次世代の人工知能(AEI)は、より深く、より有意義な人間と機械の相互作用に対するユーザの欲求に対処するために、中心的な段階を採っている。
心理学における歴史的焦点である感情の理論とは異なり、感情モデルは記述的な道具である。
この研究は、社会ロボティクス、人間と機械の相互作用、メンタルヘルスケア、計算心理学に幅広い影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-15T15:21:30Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Building Human-like Communicative Intelligence: A Grounded Perspective [1.0152838128195465]
言語学習における驚くべき進歩の後、AIシステムは人間のコミュニケーション能力の重要な側面を反映しない天井に近づいたようだ。
本稿は、ナチビストと象徴的パラダイムに基づく認知にインスパイアされたAIの方向性には、現代AIの進歩を導くために必要なサブストラテジと具体性がないことを示唆する。
本稿では,「地下」言語知能構築のための具体的かつ実装可能なコンポーネントのリストを提案する。
論文 参考訳(メタデータ) (2022-01-02T01:43:24Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
本稿では,刺激選択,特徴抽出,感情予測の3段階からなる刺激認識型視覚感情分析(VEA)手法を提案する。
我々の知る限りでは、エンド・ツー・エンドのネットワークでVEAに刺激選択プロセスを導入するのは初めてです。
実験により、提案手法は、4つの公的な視覚的感情データセットに対する最先端のアプローチよりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-09-04T08:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。