Disentangled Representation for Causal Mediation Analysis
- URL: http://arxiv.org/abs/2302.09694v2
- Date: Sat, 16 Dec 2023 01:28:19 GMT
- Title: Disentangled Representation for Causal Mediation Analysis
- Authors: Ziqi Xu, Debo Cheng, Jiuyong Li, Jixue Liu, Lin Liu, Ke Wang
- Abstract summary: Causal mediation analysis is a method that is often used to reveal direct and indirect effects.
Deep learning shows promise in mediation analysis, but the current methods only assume latent confounders that affect treatment, mediator and outcome simultaneously.
We propose the Disentangled Mediation Analysis Variational AutoEncoder (DMAVAE), which disentangles the representations of latent confounders into three types to accurately estimate the natural direct effect, natural indirect effect and total effect.
- Score: 25.114619307838602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating direct and indirect causal effects from observational data is
crucial to understanding the causal mechanisms and predicting the behaviour
under different interventions. Causal mediation analysis is a method that is
often used to reveal direct and indirect effects. Deep learning shows promise
in mediation analysis, but the current methods only assume latent confounders
that affect treatment, mediator and outcome simultaneously, and fail to
identify different types of latent confounders (e.g., confounders that only
affect the mediator or outcome). Furthermore, current methods are based on the
sequential ignorability assumption, which is not feasible for dealing with
multiple types of latent confounders. This work aims to circumvent the
sequential ignorability assumption and applies the piecemeal deconfounding
assumption as an alternative. We propose the Disentangled Mediation Analysis
Variational AutoEncoder (DMAVAE), which disentangles the representations of
latent confounders into three types to accurately estimate the natural direct
effect, natural indirect effect and total effect. Experimental results show
that the proposed method outperforms existing methods and has strong
generalisation ability. We further apply the method to a real-world dataset to
show its potential application.
Related papers
- Measuring the Reliability of Causal Probing Methods: Tradeoffs, Limitations, and the Plight of Nullifying Interventions [3.173096780177902]
Causal probing is an approach to interpreting foundation models, such as large language models.
We propose a general empirical analysis framework to evaluate the reliability of causal probing interventions.
arXiv Detail & Related papers (2024-08-28T03:45:49Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Causal Inference from Text: Unveiling Interactions between Variables [20.677407402398405]
Existing methods only account for confounding covariables that affect both treatment and outcome.
This bias arises from insufficient consideration of non-confounding covariables.
In this work, we aim to mitigate the bias by unveiling interactions between different variables.
arXiv Detail & Related papers (2023-11-09T11:29:44Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
We suggest a machine learning estimator of direct and indirect quantile treatment effects under a selection-on-observables assumption.
The proposed method is based on the efficient score functions of the cumulative distribution functions of potential outcomes.
We also propose a multiplier bootstrap for statistical inference and show the validity of the multiplier.
arXiv Detail & Related papers (2023-07-03T14:27:15Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment
Analysis [56.84237932819403]
This paper aims to estimate and mitigate the bad effect of textual modality for strong OOD generalization.
Inspired by this, we devise a model-agnostic counterfactual framework for multimodal sentiment analysis.
arXiv Detail & Related papers (2022-07-24T03:57:40Z) - Differentiable Causal Discovery Under Latent Interventions [3.867363075280544]
Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown.
We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system.
We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture.
arXiv Detail & Related papers (2022-03-04T14:21:28Z) - Causal Mediation Analysis with Hidden Confounders [24.246450472404614]
Causal mediation analysis (CMA) is a formal statistical approach for identifying and estimating causal effects.
This work aims to circumvent the stringent assumption by following a causal graph with a unified confounder and its proxy variables.
Our core contribution is an algorithm that combines deep latent-variable models and proxy strategy to jointly infer a unified surrogate confounder and estimate different causal effects in CMA from observed variables.
arXiv Detail & Related papers (2021-02-21T06:46:11Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
Estimating the likely outcome of alternatives from observational data is a challenging problem.
We show that algorithms that learn domain-invariant representations of inputs are often inappropriate.
We develop a deep kernel regression algorithm and posterior regularization framework that substantially outperforms the state-of-the-art on a variety of benchmarks data sets.
arXiv Detail & Related papers (2020-01-14T12:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.