Nonlinear Tripartite Coupling of Single Electrons on Solid Neon with Magnons in a Hybrid Quantum System
- URL: http://arxiv.org/abs/2503.08587v1
- Date: Tue, 11 Mar 2025 16:22:44 GMT
- Title: Nonlinear Tripartite Coupling of Single Electrons on Solid Neon with Magnons in a Hybrid Quantum System
- Authors: Xue-Feng Pan, Peng-Bo Li,
- Abstract summary: Coherent nonlinear tripartite interactions are critical for advancing quantum simulation and information processing in hybrid quantum systems.<n>Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single electron trapped on a solid neon surface and a nearby micromagnet.<n>Thanks to the large spatial extent of the electron zero-point motion, we show that it is possible to obtain a tunable and strong spin-magnon-motion coupling at the single quantum level.
- Score: 0.32885740436059047
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Coherent nonlinear tripartite interactions are critical for advancing quantum simulation and information processing in hybrid quantum systems, yet they remain experimentally challenging and still evade comprehensive exploration. Here, we predict a nonlinear tripartite coupling mechanism in a hybrid setup comprising a single electron trapped on a solid neon surface and a nearby micromagnet. The tripartite coupling here leverages the electron's intrinsic charge (motional) and spin degrees of freedom interacting with the magnon modes of the micromagnet. Thanks to the large spatial extent of the electron zero-point motion, we show that it is possible to obtain a tunable and strong spin-magnon-motion coupling at the single quantum level, with two phonons simultaneously interacting with a single spin and magnon excitation. This enables, for example, dissipative interactions between the electron's charge and spin degrees of freedom, permitting controlled phonon addition/subtraction in the electron's motional state and the preparation of steady-state non-Gaussian motional states. This protocol can be readily implemented with the well-developed techniques in electron traps and may open new avenues for general applications in quantum simulations and information processing based on strongly coupled hybrid quantum systems.
Related papers
- Coherent microwave control of coupled electron-muon centers [0.0]
We study a quantum system which consists of a coupled electron-moun spin state, i.e., muonium, a light isotope of hydrogen.
We demonstrate the most fundamental coherent control techniques by microwave excitation of spin transitions.
We expect that these capabilities will provide a powerful tool to investigate the effect of the environment on isolated coupled spins.
arXiv Detail & Related papers (2025-03-31T12:50:05Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Two-tone modulated cavity electromagnonics [0.0]
Two-tone modulated cavity electromagnonics can prepare macroscopic magnonic quantum states.
Ultra-sensitive magnon-based sensing can be realized by engineering backaction-evading interaction of magnons and photons.
arXiv Detail & Related papers (2023-05-18T02:20:02Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - A Hybrid Quantum-Classical Method for Electron-Phonon Systems [40.80274768055247]
We develop a hybrid quantum-classical algorithm suitable for this type of correlated systems.
This hybrid method tackles with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates.
We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases.
arXiv Detail & Related papers (2023-02-20T08:08:51Z) - Enhanced tripartite interactions in spin-magnon-mechanical hybrid
systems [0.0]
We predict a tripartite coupling mechanism in a hybrid setup comprising a single NV center and a micromagnet.
We propose to realize direct and strong tripartite interactions among single NV spins, magnons and phonons via modulating the relative motion between the NV center and the micromagnet.
arXiv Detail & Related papers (2023-01-25T06:31:27Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Complete Excitation of Discrete Quantum Systems by Single Free Electrons [0.0]
We find a maximum achievable excitation probability of $100%$, which requires specific conditions relating to the coupling strength and the transition symmetry.
Our work reveals the potential of free electrons to control localized excitations and delineates the boundaries of such control.
arXiv Detail & Related papers (2022-02-21T10:22:17Z) - Entangling free electrons and optical excitations [0.0]
We propose a scheme to generate pure entanglement between designated optical excitations in a cavity and separable free-electron states.
Specifically, we shape the electron wave-function profile to dramatically reduce the number of accessible cavity modes.
We exemplify this concept through a theoretical description of free-electron entanglement with degenerate and nondegenerate plasmon modes in silver nanoparticles and atomic vibrations in an inorganic molecule.
arXiv Detail & Related papers (2022-02-01T17:50:03Z) - Integrated quantum polariton interferometry [0.0]
We show that integrated circuits of single polaritons can be arranged to build deterministic quantum logic gates.
Our results introduce a novel paradigm for the development of practical quantum polaritonic devices.
arXiv Detail & Related papers (2021-07-28T14:09:23Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.