Quantum entropy thermalization
- URL: http://arxiv.org/abs/2302.10165v1
- Date: Mon, 20 Feb 2023 18:51:21 GMT
- Title: Quantum entropy thermalization
- Authors: Yichen Huang and Aram W. Harrow
- Abstract summary: In an isolated quantum many-body system, the entropy of a subsystem thermalizes if at long times, it is to leading order equal to the thermodynamic entropy of the subsystem at the same energy.
We prove entropy thermalization for a nearly integrable Sachdev-Ye-Kitaev model in a pure product state.
- Score: 5.5586788751870175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In an isolated quantum many-body system undergoing unitary evolution, the
entropy of a subsystem (smaller than half the system size) thermalizes if at
long times, it is to leading order equal to the thermodynamic entropy of the
subsystem at the same energy. In this paper, we prove entropy thermalization
for a nearly integrable Sachdev-Ye-Kitaev model initialized in a pure product
state. The model is obtained by adding random all-to-all $4$-body interactions
as a perturbation to a random free-fermion model.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Entropy production in the mesoscopic-leads formulation of quantum thermodynamics [0.0]
entropy production of systems strongly coupled to thermal baths is a core problem of quantum thermodynamics and mesoscopic physics.
Recently, the mesoscopic leads approach has emerged as a powerful method for studying such quantum systems strongly coupled to multiple thermal baths.
We show numerically, that a system coupled to a single bath exhibits a thermal fixed point at the level of the embedding.
arXiv Detail & Related papers (2023-12-19T19:00:04Z) - Thermalization without eigenstate thermalization [7.88657961743755]
We study the thermalization of a subsystem in an isolated quantum many-body system.
In this setting, the eigenstate thermalization hypothesis (ETH) was proposed to explain thermalization.
arXiv Detail & Related papers (2022-09-20T16:16:17Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Possibility of the total thermodynamic entropy production rate of a
finite-sized isolated quantum system to be negative for the
Gorini-Kossakowski-Sudarshan-Lindblad-type Markovian dynamics of its
subsystem [0.0]
We investigate a total thermodynamic entropy production rate of an isolated quantum system.
Even when the dynamics of the system is well approximated by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)-type Markovian master equation, the total entropy production rate can be negative.
arXiv Detail & Related papers (2021-03-09T09:11:45Z) - Numerically "exact" simulations of entropy production in the fully
quantum regime: Boltzmann entropy versus von Neumann entropy [0.0]
entropy produced by a spin system strongly coupled to a non-Markovian heat bath for various temperatures.
entropy produced by a spin system strongly coupled to a non-Markovian heat bath for various temperatures.
entropy produced by a spin system strongly coupled to a non-Markovian heat bath for various temperatures.
arXiv Detail & Related papers (2020-12-17T12:42:44Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.