Advanced Physics-Informed Neural Network with Residuals for Solving Complex Integral Equations
- URL: http://arxiv.org/abs/2501.16370v2
- Date: Thu, 01 May 2025 12:29:08 GMT
- Title: Advanced Physics-Informed Neural Network with Residuals for Solving Complex Integral Equations
- Authors: Mahdi Movahedian Moghaddam, Kourosh Parand, Saeed Reza Kheradpisheh,
- Abstract summary: RISN is a novel neural network architecture designed to solve a wide range of integral and integro-differential equations.<n>RISN integrates residual connections with high-accuracy numerical methods.<n>We demonstrate that RISN consistently outperforms classical PINNs.
- Score: 0.13499500088995461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present the Residual Integral Solver Network (RISN), a novel neural network architecture designed to solve a wide range of integral and integro-differential equations, including one-dimensional, multi-dimensional, ordinary and partial integro-differential, systems, fractional types, and Helmholtz-type integral equations involving oscillatory kernels. RISN integrates residual connections with high-accuracy numerical methods such as Gaussian quadrature and fractional derivative operational matrices, enabling it to achieve higher accuracy and stability than traditional Physics-Informed Neural Networks (PINN). The residual connections help mitigate vanishing gradient issues, allowing RISN to handle deeper networks and more complex kernels, particularly in multi-dimensional problems. Through extensive experiments, we demonstrate that RISN consistently outperforms not only classical PINNs but also advanced variants such as Auxiliary PINN (A-PINN) and Self-Adaptive PINN (SA-PINN), achieving significantly lower Mean Absolute Errors (MAE) across various types of equations. These results highlight RISN's robustness and efficiency in solving challenging integral and integro-differential problems, making it a valuable tool for real-world applications where traditional methods often struggle.
Related papers
- Neural network-enhanced integrators for simulating ordinary differential equations [0.0]
NNs are trained to learn integration errors, which are then used as additive correction terms in numerical schemes.
The effectiveness of the proposed approaches is demonstrated through extensive numerical studies using a realistic model of a wind turbine.
arXiv Detail & Related papers (2025-04-07T20:38:35Z) - Neural Control Variates with Automatic Integration [49.91408797261987]
This paper proposes a novel approach to construct learnable parametric control variates functions from arbitrary neural network architectures.
We use the network to approximate the anti-derivative of the integrand.
We apply our method to solve partial differential equations using the Walk-on-sphere algorithm.
arXiv Detail & Related papers (2024-09-23T06:04:28Z) - UGrid: An Efficient-And-Rigorous Neural Multigrid Solver for Linear PDEs [18.532617548168123]
This paper articulates a mathematically rigorous neural solver for linear PDEs.
The proposed UGrid solver, built upon the principled integration of U-Net and MultiGrid, manifests a mathematically rigorous proof of both convergence and correctness.
arXiv Detail & Related papers (2024-08-09T03:46:35Z) - An Efficient Approach to Regression Problems with Tensor Neural Networks [5.345144592056051]
This paper introduces a tensor neural network (TNN) to address nonparametric regression problems.
The TNN demonstrates superior performance compared to conventional Feed-Forward Networks (FFN) and Radial Basis Function Networks (RBN)
A significant innovation in our approach is the integration of statistical regression and numerical integration within the TNN framework.
arXiv Detail & Related papers (2024-06-14T03:38:40Z) - Separable Physics-informed Neural Networks for Solving the BGK Model of
the Boltzmann Equation [5.041477069153866]
We introduce a method based on Separable Physics-Informed Neural Networks (SPINNs) for effectively solving the BGK model of the Boltzmann equation.
We leverage the canonical polyadic decomposition structure of SPINNs and the linear nature of moment calculation, achieving a substantial reduction in computational expense for quadrature rule application.
arXiv Detail & Related papers (2024-03-10T23:44:55Z) - GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
This article introduces GIT-Net, a deep neural network architecture for approximating Partial Differential Equation (PDE) operators.
GIT-Net harnesses the fact that differential operators commonly used for defining PDEs can often be represented parsimoniously when expressed in specialized functional bases.
Numerical experiments demonstrate that GIT-Net is a competitive neural network operator, exhibiting small test errors and low evaluations across a range of PDE problems.
arXiv Detail & Related papers (2023-12-05T03:03:54Z) - Physical Information Neural Networks for Solving High-index
Differential-algebraic Equation Systems Based on Radau Methods [10.974537885042613]
We propose a PINN computational framework, combined Radau IIA numerical method with a neural network structure via the attention mechanisms, to directly solve high-index DAEs.
Our method exhibits excellent computational accuracy and strong generalization capabilities, providing a feasible approach for the high-precision solution of larger-scale DAEs.
arXiv Detail & Related papers (2023-10-19T15:57:10Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
Physics-informed neural networks (PINNs) have recently received much attention due to their capabilities in solving both forward and inverse problems.
We propose a new PINN architecture, called Reduced-PINN, that utilizes a reduced-order integration method to enable the PINN to solve stiff chemical kinetics.
arXiv Detail & Related papers (2022-08-23T09:20:42Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Polynomial-Spline Neural Networks with Exact Integrals [0.0]
We develop a novel neural network architecture that combines a mixture-of-experts model with free knot B1-spline basis functions.
Our architecture exhibits both $h$- and $p$- refinement for regression problems at the convergence rates expected from approximation theory.
We demonstrate the success of our network on a range of regression and variational problems that illustrate the consistency and exact integrability of our network architecture.
arXiv Detail & Related papers (2021-10-26T22:12:37Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
We propose a new, scalable approach for solving large problems relating to differential equations called Finite Basis PINNs (FBPINNs)
FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support.
In FBPINNs neural networks are used to learn these basis functions, which are defined over small, overlapping subdomain problems.
arXiv Detail & Related papers (2021-07-16T13:03:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.