Harnessing physics-informed operators for high-dimensional reliability analysis problems
- URL: http://arxiv.org/abs/2409.04708v1
- Date: Sat, 7 Sep 2024 04:52:03 GMT
- Title: Harnessing physics-informed operators for high-dimensional reliability analysis problems
- Authors: N Navaneeth, Tushar, Souvik Chakraborty,
- Abstract summary: Reliability analysis is a formidable task, particularly in systems with a large number of parameters.
Conventional methods for quantifying reliability often rely on extensive simulations or experimental data.
We show that physics-informed operator can seamlessly solve high-dimensional reliability analysis problems with reasonable accuracy.
- Score: 0.8192907805418583
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reliability analysis is a formidable task, particularly in systems with a large number of stochastic parameters. Conventional methods for quantifying reliability often rely on extensive simulations or experimental data, which can be costly and time-consuming, especially when dealing with systems governed by complex physical laws which necessitates computationally intensive numerical methods such as finite element or finite volume techniques. On the other hand, surrogate-based methods offer an efficient alternative for computing reliability by approximating the underlying model from limited data. Neural operators have recently emerged as effective surrogates for modelling physical systems governed by partial differential equations. These operators can learn solutions to PDEs for varying inputs and parameters. Here, we investigate the efficacy of the recently developed physics-informed wavelet neural operator in solving reliability analysis problems. In particular, we investigate the possibility of using physics-informed operator for solving high-dimensional reliability analysis problems, while bypassing the need for any simulation. Through four numerical examples, we illustrate that physics-informed operator can seamlessly solve high-dimensional reliability analysis problems with reasonable accuracy, while eliminating the need for running expensive simulations.
Related papers
- Loss Landscape Analysis for Reliable Quantized ML Models for Scientific Sensing [41.89148096989836]
We propose a method to perform empirical analysis of the loss landscape of machine learning (ML) models.
Our method allows assessing the robustness of ML models to such effects as a function of quantization precision and under different regularization techniques.
arXiv Detail & Related papers (2025-02-12T12:30:49Z) - Pseudo-Physics-Informed Neural Operators: Enhancing Operator Learning from Limited Data [17.835190275166408]
We propose the Pseudo Physics-Informed Neural Operator (PPI-NO) framework.
PPI-NO constructs a surrogate physics system for the target system using partial differential equations (PDEs) derived from basic differential operators.
This framework significantly improves the accuracy of standard operator learning models in data-scarce scenarios.
arXiv Detail & Related papers (2025-02-04T19:50:06Z) - Deep Operator Networks for Bayesian Parameter Estimation in PDEs [0.0]
We present a novel framework combining Deep Operator Networks (DeepONets) with Physics-Informed Neural Networks (PINNs) to solve partial differential equations (PDEs)
By integrating data-driven learning with physical constraints, our method achieves robust and accurate solutions across diverse scenarios.
arXiv Detail & Related papers (2025-01-18T07:41:05Z) - Towards the Best Solution for Complex System Reliability: Can Statistics Outperform Machine Learning? [39.58317527488534]
This study compares the effectiveness of classical statistical techniques and machine learning methods for improving reliability assessments.
We aim to demonstrate that classical statistical algorithms often yield more precise and interpretable results than black-box machine learning approaches.
arXiv Detail & Related papers (2024-10-05T17:31:18Z) - Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning [45.78096783448304]
In this work, seeking data efficiency, we design unsupervised pretraining for PDE operator learning.
We mine unlabeled PDE data without simulated solutions, and we pretrain neural operators with physics-inspired reconstruction-based proxy tasks.
Our method is highly data-efficient, more generalizable, and even outperforms conventional vision-pretrained models.
arXiv Detail & Related papers (2024-02-24T06:27:33Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
We provide an insight into how data-driven approaches can complement conventional techniques to solve engineering and physics problems.
We highlight a novel and fast machine learning-based approach to learning the solution operator of a PDE operator learning.
arXiv Detail & Related papers (2023-01-30T23:29:33Z) - FEM-based Real-Time Simulations of Large Deformations with Probabilistic
Deep Learning [1.2617078020344616]
We propose a highly efficient deep-learning surrogate framework that is able to predict the response of hyper-elastic bodies under load.
The framework takes the form of special convolutional neural network architecture, so-called U-Net, which is trained with force-displacement data.
arXiv Detail & Related papers (2021-11-02T20:05:22Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.