Deep Convolutional Framelet Denoising for Panoramic by Mixed Wavelet Integration
- URL: http://arxiv.org/abs/2302.10306v3
- Date: Fri, 30 Aug 2024 07:39:50 GMT
- Title: Deep Convolutional Framelet Denoising for Panoramic by Mixed Wavelet Integration
- Authors: Masoud Shahraki Mohammadi, Seyed Javad Seyed Mahdavi Chabok,
- Abstract summary: One of the most critical challenges in this area has consistently been lowering the image noise.
This paper suggests integrating the waveform with the Daubechies (D4) wavelet due to its higher energy concentration and employs the u-Net neural network architecture.
The effectiveness of a one-wave network has increased from 0.5% to 1.2%, according to studies done on other datasets.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Enhancing quality and removing noise during preprocessing is one of the most critical steps in image processing. X-ray images are created by photons colliding with atoms and the variation in scattered noise absorption. This noise leads to a deterioration in the graph's medical quality and, at times, results in repetition, thereby increasing the patient's effective dose. One of the most critical challenges in this area has consistently been lowering the image noise. Techniques like BM3d, low-pass filters, and Autoencoder have taken this step. Owing to their structural design and high rate of repetition, neural networks employing diverse architectures have, over the past decade, achieved noise reduction with satisfactory outcomes, surpassing the traditional BM3D and low-pass filters. The combination of the Hankel matrix with neural networks represents one of these configurations. The Hankel matrix aims to identify a local circle by separating individual values into local and non-local components, utilizing a non-local matrix. A non-local matrix can be created using the wave or DCT. This paper suggests integrating the waveform with the Daubechies (D4) wavelet due to its higher energy concentration and employs the u-Net neural network architecture, which incorporates the waveform exclusively at each stage. The outcomes were evaluated using the PSNR and SSIM criteria, and the outcomes were verified by using various waves. The effectiveness of a one-wave network has increased from 0.5% to 1.2%, according to studies done on other datasets
Related papers
- Haar Nuclear Norms with Applications to Remote Sensing Imagery Restoration [53.68392692185276]
This paper proposes a novel low-rank regularization term, named the Haar nuclear norm (HNN), for efficient and effective remote sensing image restoration.
It leverages the low-rank properties of wavelet coefficients derived from the 2-D frontal slice-wise Haar discrete wavelet transform.
Experimental evaluations conducted on hyperspectral image inpainting, multi-temporal image cloud removal, and hyperspectral image denoising have revealed the HNN's potential.
arXiv Detail & Related papers (2024-07-11T13:46:47Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture quality ultrasound images.
We present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet)
In this model, we incorporate wavelet gates (WGs) and attention gates (AGs) between the encoder and decoder instead of a simple connection to overcome the limitations mentioned.
arXiv Detail & Related papers (2023-11-17T20:32:37Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - Improvement of Color Image Analysis Using a New Hybrid Face Recognition
Algorithm based on Discrete Wavelets and Chebyshev Polynomials [0.0]
This work is unique in the use of discrete wavelets that were built from or derived from Chebyshevvolutionals of the second and third kind.
The filter Discrete Third Chebyshev Wavelets Transform (FDTCWT) is used in the process of analyzing color images.
The best results were achieved in accuracy and in the least amount of time.
arXiv Detail & Related papers (2023-03-23T10:20:19Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN [3.3909577600092122]
We propose a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing.
Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance.
arXiv Detail & Related papers (2022-05-02T07:38:19Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
We propose a novel network architecture denoted as IGNet, in order to refine the frequency bands from low to high in a progressive manner.
With this design, more inter-frequency prior and information are utilized, thus the model size can be lightened while still perserves competitive results.
arXiv Detail & Related papers (2021-12-22T10:35:53Z) - Progressive Training of Multi-level Wavelet Residual Networks for Image
Denoising [80.10533234415237]
This paper presents a multi-level wavelet residual network (MWRN) architecture as well as a progressive training scheme to improve image denoising performance.
Experiments on both synthetic and real-world noisy images show that our PT-MWRN performs favorably against the state-of-the-art denoising methods.
arXiv Detail & Related papers (2020-10-23T14:14:00Z) - Wavelet Integrated CNNs for Noise-Robust Image Classification [51.18193090255933]
We enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT)
WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.
arXiv Detail & Related papers (2020-05-07T09:10:41Z) - Identity Enhanced Residual Image Denoising [61.75610647978973]
We learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising.
The proposed network produces remarkably higher numerical accuracy and better visual image quality than the classical state-of-the-art and CNN algorithms.
arXiv Detail & Related papers (2020-04-26T04:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.