A Slow-Shifting Concerned Machine Learning Method for Short-term Traffic
Flow Forecasting
- URL: http://arxiv.org/abs/2303.17782v1
- Date: Fri, 31 Mar 2023 03:07:53 GMT
- Title: A Slow-Shifting Concerned Machine Learning Method for Short-term Traffic
Flow Forecasting
- Authors: Zann Koh, Yan Qin, Yong Liang Guan, Chau Yuen
- Abstract summary: A crucial challenge in traffic flow forecasting is the slow shifting in temporal peaks between daily and weekly cycles.
We propose a slow shifting concerned machine learning method for traffic flow forecasting, which includes two parts.
Our proposed method outperforms the state-of-art results by 14.55% and 62.56% using the metrics of root mean squared error and mean absolute percentage error, respectively.
- Score: 21.6456624219159
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The ability to predict traffic flow over time for crowded areas during rush
hours is increasingly important as it can help authorities make informed
decisions for congestion mitigation or scheduling of infrastructure development
in an area. However, a crucial challenge in traffic flow forecasting is the
slow shifting in temporal peaks between daily and weekly cycles, resulting in
the nonstationarity of the traffic flow signal and leading to difficulty in
accurate forecasting. To address this challenge, we propose a slow shifting
concerned machine learning method for traffic flow forecasting, which includes
two parts. First, we take advantage of Empirical Mode Decomposition as the
feature engineering to alleviate the nonstationarity of traffic flow data,
yielding a series of stationary components. Second, due to the superiority of
Long-Short-Term-Memory networks in capturing temporal features, an advanced
traffic flow forecasting model is developed by taking the stationary components
as inputs. Finally, we apply this method on a benchmark of real-world data and
provide a comparison with other existing methods. Our proposed method
outperforms the state-of-art results by 14.55% and 62.56% using the metrics of
root mean squared error and mean absolute percentage error, respectively.
Related papers
- A Multi-Channel Spatial-Temporal Transformer Model for Traffic Flow Forecasting [0.0]
We propose a multi-channel spatial-temporal transformer model for traffic flow forecasting.
It improves the accuracy of the prediction by fusing results from different channels of traffic data.
Experimental results on six real-world datasets demonstrate that introducing a multi-channel mechanism into the temporal model enhances performance.
arXiv Detail & Related papers (2024-05-10T06:37:07Z) - An Application of Vector Autoregressive Model for Analyzing the Impact
of Weather And Nearby Traffic Flow On The Traffic Volume [0.0]
This paper aims to predict the traffic flow at one road segment based on nearby traffic volume and weather conditions.
Our team also discover the impact of weather conditions and nearby traffic volume on the traffic flow at a target point.
arXiv Detail & Related papers (2023-11-12T16:45:29Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - Multi-graph Spatio-temporal Graph Convolutional Network for Traffic Flow
Prediction [0.5551832942032954]
Daily traffic flow prediction still faces challenges at network-wide toll stations.
In this paper, a correlative prediction method is proposed for daily traffic flow highway domain through flow-temporal deep learning.
Our method shows clear improvement in predictive accuracy than baselines and practical benefits in business.
arXiv Detail & Related papers (2023-08-10T14:20:43Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
arXiv Detail & Related papers (2023-03-10T02:22:33Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Accurate non-stationary short-term traffic flow prediction method [0.0]
This paper proposes a Long Short-Term Memory (LSTM) based method that can forecast short-term traffic flow precisely.
The proposed method performs favorably against other state-of-the-art methods with better performance on extreme outliers, delay effects, and trend-changing responses.
arXiv Detail & Related papers (2022-05-01T17:11:34Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Short-Term Traffic Forecasting Using High-Resolution Traffic Data [2.0625936401496237]
This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k.a. event-based) traffic data.
The proposed methods are verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE.
arXiv Detail & Related papers (2020-06-22T14:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.