Multimodal Trajectory Prediction: A Survey
- URL: http://arxiv.org/abs/2302.10463v1
- Date: Tue, 21 Feb 2023 06:11:08 GMT
- Title: Multimodal Trajectory Prediction: A Survey
- Authors: Renhao Huang, Hao Xue, Maurice Pagnucco, Flora Salim, Yang Song
- Abstract summary: Trajectory prediction is an important task to support safe and intelligent behaviours in autonomous systems.
New task named multimodal trajectory prediction (MTP) aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent.
- Score: 13.519480642785561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is an important task to support safe and intelligent
behaviours in autonomous systems. Many advanced approaches have been proposed
over the years with improved spatial and temporal feature extraction. However,
human behaviour is naturally multimodal and uncertain: given the past
trajectory and surrounding environment information, an agent can have multiple
plausible trajectories in the future. To tackle this problem, an essential task
named multimodal trajectory prediction (MTP) has recently been studied, which
aims to generate a diverse, acceptable and explainable distribution of future
predictions for each agent. In this paper, we present the first survey for MTP
with our unique taxonomies and comprehensive analysis of frameworks, datasets
and evaluation metrics. In addition, we discuss multiple future directions that
can help researchers develop novel multimodal trajectory prediction systems.
Related papers
- Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision [2.365702128814616]
Accurate vehicle trajectory prediction is an unsolved problem in autonomous driving.
We propose a middle-ground where multiple trajectory segments are chained together.
Our proposed Multi-Branch Self-Supervised Predictor receives additional training on new predictions starting at intermediate future segments.
arXiv Detail & Related papers (2023-06-06T02:46:28Z) - LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of
Dynamic Agents [10.869902339190949]
We propose a novel prediction model, referred to as the lane-aware prediction (LaPred) network.
LaPred uses the instance-level lane entities extracted from a semantic map to predict the multi-modal future trajectories.
The experiments conducted on the public nuScenes and Argoverse dataset demonstrate that the proposed LaPred method significantly outperforms the existing prediction models.
arXiv Detail & Related papers (2021-04-01T04:33:36Z) - LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [139.33800431159446]
LookOut is an approach to jointly perceive the environment and predict a diverse set of futures from sensor data.
We show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset.
arXiv Detail & Related papers (2021-01-16T23:19:22Z) - From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [54.273455592965355]
Uncertainty in future trajectories stems from two sources: (a) sources known to the agent but unknown to the model, such as long term goals and (b)sources that are unknown to both the agent & the model, such as intent of other agents & irreducible randomness indecisions.
We model the epistemic un-certainty through multimodality in long term goals and the aleatoric uncertainty through multimodality in waypoints& paths.
To exemplify this dichotomy, we also propose a novel long term trajectory forecasting setting, with prediction horizons upto a minute, an order of magnitude longer than prior works.
arXiv Detail & Related papers (2020-12-02T21:01:29Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z) - Diverse and Admissible Trajectory Forecasting through Multimodal Context
Understanding [46.52703817997932]
Multi-agent trajectory forecasting in autonomous driving requires an agent to accurately anticipate the behaviors of the surrounding vehicles and pedestrians.
We propose a model that synthesizes multiple input signals from the multimodal world.
We show a significant performance improvement over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-03-06T13:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.