An Efficient Multi-threaded Collaborative Filtering Approach in Recommendation System
- URL: http://arxiv.org/abs/2409.19262v1
- Date: Sat, 28 Sep 2024 06:33:18 GMT
- Title: An Efficient Multi-threaded Collaborative Filtering Approach in Recommendation System
- Authors: Mahamudul Hasan,
- Abstract summary: This research focuses on building a scalable recommendation system capable of handling numerous users efficiently.
A multithreaded similarity approach is employed to achieve this, where users are divided into independent threads that run in parallel.
This parallelization significantly reduces computation time compared to traditional methods, resulting in a faster, more efficient, and scalable recommendation system.
- Score: 0.0
- License:
- Abstract: Recommender systems are a subset of information filtering systems designed to predict and suggest items that users may find interesting or relevant based on their preferences, behaviors, or interactions. By analyzing user data such as past activities, ratings, and preferences, these systems generate personalized recommendations for products, services, or content, with common applications including online retail, media streaming platforms, and social media. Recommender systems are typically categorized into three types: content-based filtering, which recommends items similar to those the user has shown interest in; collaborative filtering, which analyzes the preferences of similar users; and hybrid methods, which combine both approaches to improve accuracy. These systems enhance user experience by reducing information overload and providing personalized suggestions, thus increasing engagement and satisfaction. However, building a scalable recommendation system capable of handling numerous users efficiently is a significant challenge, particularly when considering both performance consistency and user data security, which are emerging research topics. The primary objective of this research is to address these challenges by reducing the processing time in recommendation systems. A multithreaded similarity approach is employed to achieve this, where users are divided into independent threads that run in parallel. This parallelization significantly reduces computation time compared to traditional methods, resulting in a faster, more efficient, and scalable recommendation system that ensures improved performance without compromising user data security.
Related papers
- Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - The Fault in Our Recommendations: On the Perils of Optimizing the Measurable [2.6217304977339473]
We show that optimizing for engagement can lead to significant utility losses.
We propose a utility-aware policy that initially recommends a mix of popular and niche content.
arXiv Detail & Related papers (2024-05-07T02:12:17Z) - Managing multi-facet bias in collaborative filtering recommender systems [0.0]
Biased recommendations across groups of items can endanger the interests of item providers along with causing user dissatisfaction with the system.
This study aims to manage a new type of intersectional bias regarding the geographical origin and popularity of items in the output of state-of-the-art collaborative filtering recommender algorithms.
Extensive experiments on two real-world datasets of movies and books, enriched with the items' continents of production, show that the proposed algorithm strikes a reasonable balance between accuracy and both types of the mentioned biases.
arXiv Detail & Related papers (2023-02-21T10:06:01Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - The Stereotyping Problem in Collaboratively Filtered Recommender Systems [77.56225819389773]
We show that matrix factorization-based collaborative filtering algorithms induce a kind of stereotyping.
If preferences for a textitset of items are anti-correlated in the general user population, then those items may not be recommended together to a user.
We propose an alternative modelling fix, which is designed to capture the diverse multiple interests of each user.
arXiv Detail & Related papers (2021-06-23T18:37:47Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - A Hybrid Recommender System for Recommending Smartphones to Prospective
Customers [0.7310043452300736]
Hybrid recommender systems combine multiple recommendation strategies in different ways to benefit from their complementary advantages.
Some hybrid recommender systems have combined collaborative filtering and content-based approaches to build systems that are more robust.
We propose a hybrid recommender system, which combines Alternative Least Squares (ALS) based collaborative filtering with deep learning to enhance recommendation performance.
arXiv Detail & Related papers (2021-05-26T23:10:51Z) - Modurec: Recommender Systems with Feature and Time Modulation [50.51144496609274]
We propose Modurec: an autoencoder-based method that combines all available information using the feature-wise modulation mechanism.
We show on Movielens datasets that these modifications produce state-of-the-art results in most evaluated settings.
arXiv Detail & Related papers (2020-10-13T09:18:33Z) - Recommendation system using a deep learning and graph analysis approach [1.2183405753834562]
We propose a novel recommendation method based on Matrix Factorization and graph analysis methods.
In addition, we leverage deep Autoencoders to initialize users and items latent factors, and deep embedding method gathers users' latent factors from the user trust graph.
arXiv Detail & Related papers (2020-04-17T08:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.